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Preface

This volume began as an idea for a conference. The idea was that the goals of
archaeological predictive modeling needed to be reexamined in light of then-current
criticisms, such as: site location cannot be modeled because ancient cultures cannot be
modeled; site location cannot be modeled on the basis of known site locations because
the population of known sites is biased by sampling errors; and, site models based on
environmental factors are environmentally deterministic and therefore fatally flawed.

At the same time, advances in GIS (geographic information systems) software and
personal-computing power had put sophisticated tools in the hands of archaeologists with
an interest in predictive modeling. In other disciplines, GIS was being employed to model
species diversity in forests, predict wetland dynamics, model health-care availability, and
a host of other useful tasks. Surely these other disciplines had provoked profound
criticism of their “fatal flaws.” Yet they persisted and were doing something useful
nevertheless. Perhaps there might be something useful to be done in archaeology by using
GIS in service of predictive modeling if only we could see our way through the criticisms
and neutralize our flaws.

True, it is unlikely that archaeologists will successfully model ancient society because
it is too remote and too many mysteries remain. Also true, we are unlikely to predict the
location of the next important site in the region of our choice because computers cannot
be expected to perform a task that we are unable to formulate with our minds. And yet,
other disciplines were using GIS methods and data to make useful models.

Our conference was inspired by the knowledge that some archaeologists were actually
producing useful models—maodels that helped land managers and resource planners make
better informed and more reasonable decisions. Other archaeological scholars were
developing new methods and improving old ones. Decision support was a tacit if not
proclaimed goal, the fatal flaws of societal modeling or site prospection notwithstanding.
It seemed like a good time to assemble a broad range of experts to establish a baseline for
site-location models.

And it was a good time, too. The response to our call for papers was gratifying.
Responses came from Australia, Austria, Belgium, France, Greece, The Netherlands,
Slovenia, the United Kingdom, and throughout the U.S. The international enthusiasm was
especially welcome because the Wescott and Brandon (2000) edited volume was due out
and had primarily emphasized the Western Hemisphere.

The conference center at Argonne National Laboratory’s Advanced Photon Source
was an outstanding venue. Its seclusion, security, and excellent facilities no doubt added
to the freedom allowing ideas to readily flow. Our schedule offered plenty of time for
discussion in addition to paper delivery. The discussion time was well used by the
audience, who offered generous responses with lively give and take. After the papers
were delivered, most of the participants were able to stay for an extended discussion
about the immediate future of the modeling endeavor. This, too, was a lively exchange



with an overtone not unlike what you might expect in the first full meeting of a newly
formed organization. Well, we did not actually create a new organization, but | have
noticed that some of the new notions we kicked around are now, 4 years later, mentioned
more often in the literature—notions like “decision-support” and *“baseline
establishment.”

Almost all of the presenters followed through by submitting papers for publication.
That is why this is such a hefty volume. Each contribution was well conceived and
professionally written, as | am sure you will agree.

MWM
DeKalb, Illinois
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Section 1:
Introduction



1
There and Back Again: Revisiting
Archaeological Locational Modeling

Kenneth L.Kvamme

1.1 Introduction

Predictive modeling—the practice of building models that in some way indicate the
likelihood of archaeological sites, cultural resources, or past landscape use across a
region—has its roots in the 1960s and earlier. Such models were implicit in the earliest
expressions of settlement archaeology (e.g., Willey 1953) and in later work that actually
formulated explicit statements about prehistoric location (e.g., Williams et al. 1973). The
First Age of Modeling, in the early to mid-1980s, saw many stumbling blocks to be
overcome: ways of thinking that concentrated more on difficulties and sources of
variation that seemed to dictate why archaeological models could not be developed, the
“processualist school” that advocated deductive or “lawlike” behavioral statements as a
basis for modeling and decried uses of statistical methodologies based on simple
correlations, and a lack of effective computer technology for the application of models
across regions. Yet, despite these disadvantages, real progress was made, largely in
university research settings made possible by cultural resource management
(CRM)funded projects. Some of these advances included recognition of sampling biases
in archaeological databases, procedures for characterization of background environments,
applications of univariate and multivariate statistical tests and models, the use of
independent test samples for model performance assessments, and the pioneering
applications of geographic information system (GIS) technology in the discipline (see
Judge and Sebastian 1988; for historical overviews see Kvamme 1995; Wheatley and
Gillings 2002:165-181).

The Second Age of Modeling, now ongoing, is very different in form and orientation.
Readily available digital data and ease of GIS software application facilitate the entire
modeling process, and ample funding has created incentive. There is now a multimillion
dollar archaeological modeling industry, but based almost entirely within CRM settings.
One key benefit of this work has been the collation and standardization of archaeological
knowledge within modeling regions into computer databases; another has been the
building of diverse GIS layers for those regions (Mink et al., Chapter 10, this volume).
Both are of great use to the archaeological community. Yet, given the volume of work
and its scope—archaeological models have been developed for entire states and large
segments of Canadian provinces (e.g., Dalla Bona and Larcombe 1996; Hobbs 1996;
Madry et al., Chapter 15, this volume)—shortcomings exist. Funding agencies may be
willing to support development of modeling applications, but not new research into
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methods or more-anthropological interests revolving around the interpretation of results
and the incorporation of findings into the knowledge base of archaeology. Moreover,
much of this work does not get published, and there has been a sameness to approaches
that suggests a lack of innovation beyond basic procedures established during the First
Age. In other words, advances in archaeological location modeling have not generally
kept pace with new methodologies developed in such diverse fields as GIS, satellite
remote sensing, economic geography, and wildlife biology. Fortunately, the chapters that
follow in this volume serve to correct many of these deficiencies.

In this chapter | examine some of the key issues in the First Age of Modeling that yet
impact and impinge on the conduct of modeling today. | hope to clear up several sticky
issues. Being somewhat of a fossil from the First Age, | necessarily digress and offer
some historical background from my own experience in the growth of modeling. Beyond
this, | present a theoretical justification for the practice of archaeological location
modeling, review several important new methodologies that have arisen in the past
decade, and discuss how they might be incorporated within our modeling tool Kits.

1.2 Not So in Bongo-Bongo: Cultural Variation and Modeling

Most North American archaeologists are trained within departments of anthropology. The
province of that field claims the full range of variability among all peoples, in all places,
in all times (Hoebel 1966). Such tremendous variation in cultures and behaviors is mind-
boggling to contemplate, and | believe it structures how the anthropologically trained
view the world and approach their research. Focus tends to be placed on variation or
differences between cultures, and in archaeology, the unique artifacts, sites, or dates; the
spectacular find; the oldest; the richest, and the extraordinary tend to receive focus.

In stark contrast, scientific practice in most disciplines focuses on regularities or
patterns, on commonalities, on recognizing order in the chaos of the natural world by
formulating generalizations or rules (laws, principles) of increasing specificity. The
anthropological tendency to concentrate on differences and contrasts among phenomena
stifles such progress, resulting in little more than a compendium of variation. In spite of
this, a large anthropological movement did arise in the mid-20th century that examined
systematic cultural patterns, hoping to elucidate regularities underlying human behaviors.
Known as “cross-cultural methodology” and culminating in such endeavors as the Cross-
Cultural Survey and the Human Relations Area Files, countless cultural patterns and
causal and functional relationships were investigated between such phenomena as types
of social organization and warfare, or form of residence, or environmental type, or
religious practices, and other factors (e.g., see Murdock 1949, 1967). As is always the
case with anthropological data, exceptions to general rules were frequent: a culture or
cultures could be found that did not “fit the pattern.” I am reliably informed that when
George Peter Murdock, a central figure in cross-cultural methodology, was confronted
with the unique society once too often, he exclaimed in exasperation “not so in Bongo-
bongo,” a theme relevant here.

About 15 years ago | decided to investigate this penchant for the unique, this focus on
chaos rather than pattern, by having students in my anthropological statistics class at the
University of Arizona (where | was then employed) undertake an experiment with the
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help of the larger student body. Each student interviewed ten individuals—upper class
undergraduates, graduate students, or faculty—who would have well-inculcated modes of
thought according to their fields of study. Each interviewed five from anthropology and
five from physical sciences like physics, engineering, chemistry, or astronomy. The
interviewees were asked to write a descriptive statement about two similar objects, in this
case a common wooden pencil and a Bic pen.! The results in no way constitute a random
sample, but I think they are enlightening. About two-thirds of the anthropologists asserted
contrasts or differences in their responses, with statements like “one is green, the other
white,” “one has a metal tip, the other a graphite one,” “one cross-section is octagonal,
the other is circular,” and so on. In the more science-based group, nearly the opposite
occurred, with almost three-quarters seeing commonalities like “both are roughly
cylindrical,” “both have about the same mass,” or “both have a conical tip.”

These perspectives on anthropological thinking are relevant to many of the difficulties
that | and others faced in developing approaches to archaeological locational modeling
nearly a quarter-century ago, and they may even apply today. Instead of focusing on
problem-oriented solutions to modeling human locational behavior, much energy gets
diverted to complaining about the many problems, difficulties, and “deficiencies” of the
archaeological record, or to variations in human behavioral practices, or to insufficient
digital representations or algorithms in GIS, or to the inadequacies of contemporary
maps, and on and on. A list of some of the sources of variation that have been used as
arguments against modeling is given in Table 1.1. (Ironically, most of it comes from the
pioneering collection on archaeological predictive modeling edited by Judge and
Sebastian 1988; more on this volume below.) These many difficulties and dimensions of
variation have served to deflect our attentions away from pathways that might lead to
successful models; they also emphasize the many challenges one is faced with in
modeling past human locational behaviors.

To give a sense of balance, | formulated a similar list containing reasons why we can
pursue models of archaeological location, but it came down to only three simple points.

1. Human behavior is patterned with respect to the natural environment and to social
environments created by humanity itself.

2. We know or can learn something about how people interacted with these environments
by observing relationships between human residues (i.e., the archaeological record)
and environmental features.

3. GIS provides a tool for mapping what we know.

TABLE 1.1 A Few Sources of Variation Posing
Difficulties in the Archaeological Modeling Process

Archaeological

« Many archaeological sites are buried, and we cannot model them because we do not and cannot
know about their distributions

« Known site distributions in extant government files and databases are biased because of (a) the
haphazard way in which many were discovered and (b) variations in obtrusiveness, visibility,
and preservation

« Many known sites are inaccurately located on maps and in databases
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« One cannot model archaeological site distributions because “site” is a meaningless concept;
human behavior did not occur in discrete bounded areas but formed a continuum over the
landscape

« Functional, temporal, or cultural site types cannot be readily determined for most sites in an
archaeological database, yet profound locational differences must exist between the types

« We must be able to model and understand the archaeological formation process, both natural and
cultural, before we can model where sites might be found

Environmental

« Past environments were very different from present ones, so we cannot model the past based on
the present

* Models based on landscape variables are meaningless

* We do not know the locations of resources important in past times, such as water sources,
springs, edible-species distributions, lithic raw material sources, and the like

Behavioral
« Human behavior is too idiosyncratic to be modeled; one cannot model the unique

« One must understand and model complete behavioral systems before archaeological models can
be built

« Site location is more a function of unknown (and frequently unknowable) social environments
representing dimensions that we cannot map

« The most interesting sites are the (idiosyncratic) ones that do not fit the pattern

< Environmental variables shown to be important to site locations may only be proxies for
variables that were actually important

Technical

< Blue-line features on topographic maps are frequently arbitrary and unreliable indicators of
water

* Modern soil types are meaningless because they are changed from the past and, in any case, are
frequently irrelevant to past farming practices

« GIS data have insufficient resolution and poorly represent the real world
¢ GIS data are inaccurate
« Linear distances computable in GIS are meaningless

« Models based on statistics cannot meet random-sampling assumptions because most extant data
were not obtained by random sampling

« Models derived from random cluster sampling are misspecified because they do not adjust for
underestimated variances

« Grouping sites of many types into a single, site-present class creates too much variability to be
modeled

« Models based on site presence-absence criteria are misspecified because one cannot assume site
absence
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1.3 The First Age of Modeling: A Personal Narrative

As a master’s candidate in the mid-1970s, | was excited by the possibilities of the New
Archaeology and assumed that knowledge of statistical methods would go a long way
toward solving the problems of archaeology, as were many of my fellow students.
(Fortunately, we were blessed with a rather good agricultural statistics department at
Colorado State University, in which many of us took classes.) | remember working with
discriminant functions on a lithics problem when a fellow student, Jim Chase (now with
the U.S. Bureau of Land Management, Wyoming), asked me if | thought they might be
applied to environmental variables map-measured at known sitepresent and site-absent
samples to develop a model that might ultimately be employed to make predictions about
archaeological locations. | replied that | thought it a splendid idea, and fortunately
remembered it.

A few years later, while working for a small archaeological company, a proposal
request by the U.S. Bureau of Land Management (BLM) called for (1) a large Class 2
survey (a random sample survey) in the central Rocky Mountains and (2) the mapping of
likely locations of archaeological sites for management purposes, based on patterns in the
sample data. At that time, such maps were typically composed of giant polygons
corresponding to broad environmental tracts like valley bottoms, open grasslands, or
juniper forests, and “predictive” guidance was typically given by estimates of site density
per zone based on survey sample data (Figure 1.1 a). Environmental types with high
estimated archaeological densities were deemed “more sensitive” for management and
planning purposes than zones of low densities (e.g., Camilli 1984; Ebert 1978; Plog
1983).

Our successful proposal, for what became known as the Glenwood project, employed
canonical discriminant functions and, without belaboring details, we generated a model
that appeared on the basis of jackknifed validation tests on the sample data, plus a second
independent data set (also a random sample survey), to offer good performance in the
range of 80 to 85% correct (Kvamme 1980). It is emphasized that all this occurred before
GIS or even personal computers (PCs) were available, so mapping results in the form of a
probability surface was not easily undertaken.

Instead, | programmed the discriminant functions into a Texas Instruments TI-59
calculator, an amazing gizmo that read from or wrote to tiny magnetic strips, and this
program was given to the BLM in lieu of predictive maps. To assess a property about the
potential for archaeological resources, the land manager would go to the proper map,
hand-measure the six relevant environmental variables (e.g., slope, elevation, local relief,
height above river), enter them into the calculator by pressing preprogrammed function
keys, and it would spit out a p-value for that locality (i.e., an estimated probability of
archaeological site-presence conditional on the environmental measurements). This
methodology was actually employed by the BLM to
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FIGURE 1.1 Early archaeological
“prediction” maps, (a) A map based on
gross environmental zones with
estimates of likely site density (after
Plog 1983). (b) An early, precompiler
age, hand-drafted archaeological
probability surface (after Kvamme
1980). (c) The first archaeological
probability surface derived completely
through computer measurement of map
variables (after Kvamme 1983).

assist in property assessments for a number of years. It was of some significance that this
model could be applied to characteristics associated with a point on a map, because
previously the resolution of most models was at the level of the environmental zone or
community, typically many hectares (or even square kilometers) in area (Figure 1.1a).
The idea of producing a mappable archaeological probability surface was in my mind,
however, and our team was bent on including one in our final report (Kvamme 1980). We
did so by enlarging a single quarter-section (quarter of a square mile; about 800800 m)
that contained three archaeological sites independently discovered by another project. We
superimposed a 50x50-m grid, producing a 16x16 matrix of 256 cells, and in each we
hand-measured the six predictor variables of the model, for 1536 measurements. Lacking
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a PC, and with the nearest mainframe computer more than 150 km away, we elected to
spend an afternoon with our TI-59 and entered the six measurements for each cell by
hand to generate the 256 p-values. Finally, we hand-drafted a probability surface that,
pleasingly, corresponded well with our notions about the most likely places where
archaeological sites would be found (based on years of experience in the area), and with
the known site locations (Figure 1.1b).

This exercise convinced me that (1) our archaeological modeling methodology was far
superior to any other approach then available; (2) the model itself, the statistical analyses
leading up to it, and its mapping offered great potential for understanding human-
environmental interactions; and (3) an automated mechanism was absolutely necessary to
map the model functions over broad regions. In 1980 | returned to graduate school for a
doctorate at the University of California at Santa Barbara to study with Michael Jochim,
whose then-recent book Hunter-Gatherer Subsistence and Settlement: A Predictive
Model (1976) was of prime relevance (this work offers a rare example of an
archaeological model derived through mathematical deduction); with Albert Spaulding,
the founder of statistical reasoning in archaeology; and to study in the university’s
Department of Geography, then leading the country in quantitative geography and
computerized map handling, later to grow into GIS.

Without GIS software in 1980-1983, we employed a computer system for handling
satellite data known as VICAR (video imaging communication and retrieval) that was
connected with something called IBIS (image-based information system), which allowed
special-purpose FORTRAN subroutines to be linked through horrendous IBM JCL (job
control language), all on punch cards. | became a programmer. Without scanning
technology and no readymade digital maps, | first learned to communicate with digitizers
so that digital representations of elevation contour lines could be produced, and
ultimately a DEM (digital elevation model) after interpolation. FORTRAN routines were
written for computing slope, aspect, local relief, ridge and drainage lines, terrain
variance; generating distance surfaces from stream vectors; and other operations. While
working on this embryonic GIS, | was able to computer-generate my first archaeological
probability surface, presented at the annual meeting of the Society for American
Archaeology (SAA) in 1981, with improvements in subsequent meetings (published in
Kvamme 1983; Figure 1.1c).

At those SAA meetings, | made two important contacts. One was Sandra Scholtz (now
Parker) of the Arkansas Archeological Survey, who had been independently developing a
nearly identical modeling methodology in their Sparta Mine project, in Arkansas. Their
big stumbling block was also the lack of an automated means to measure map variables,
but with a circumscribed area, they were able to hand-measure a suite of relevant
environmental variables within grid cells 200 m in size (to reduce the number of
measurements), from which they generated prehistoric- and historic-site probability
surfaces using SAS statistical software (Scholtz 1981; Parker 1985). They were using a
relatively new and more robust classification algorithm known as logistic regression
(based on the recommendation of James Dunn, Department of Mathematics, University
of Arkansas), which proved fortuitous, because Alan Strahler, who pioneered
applications of logistic regression in remote sensing (Maynard and Strahler 1981), held a
visiting professorship at UC-Santa Barbara the following year. My second important
contact was Bob Hasenstab, then a student at the University of Massachusetts (now at the
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University of Illinois-Chicago), who had also programmed a GIS from scratch, in
FORTRAN, to enable cultural resource modeling studies of high resolution in the Passaic
River area of New Jersey (Hasenstab 1983). These and other associations led to the first
GIS and archaeology symposium, held at the 1985 SAA meeting and quaintly titled:
“Computer-Based Geographic Information Systems and Archaeology: A Tool of the
Future for Solving Problems of the Past.”

Post-doctorate employment took me to the University of Denver, where | became
involved in the volume Quantifying the Present and Predicting the Past: Theory, Method,
and Application of Archaeological Predictive Modeling (edited by Judge and Sebastian
and completed by 1985, but not published until 1988). Government-sponsored project
authors (often part of consulting firms) had to be part of successful proposals in a
national competition, a fact that was certainly one ingredient that contributed to ensuing
problems, because individuals who should have been part of it either did not bid (they did
not know about it) or did not submit competitive proposals. Ironically, many that
ultimately joined the project had little or no previous experience in archaeological
location modeling. The result was considerable chaos, leading to its many-year delay to
publication and to issues still influencing contemporary work that warranted closer
scrutiny.

Several editors and authors of Quantifying the Present and Predicting the Past were
ardent followers of the processualist school of archaeology (devoted to understanding
elements of culture process or change), who informed us that only models generated
through deductive reasoning were “good” and potentially “explanatory,” while models
utilizing statistical methods were not only “inductive” (a bad word at the time), but
“merely correlative” and incapable of explanatory insight. Furthermore, it was asserted
that “models must span the entire explanatory framework rather than simply
concentrating on those things we want to predict.... It is human organizational systems
that must be modeled, as well as all those complicating factors between the highest level
of human behavior and the archaeological record” (Ebert and Kohler 1988:105). This
seemed a tall (and naive) order to fill that, if followed, left archaeological modeling dead
in the water before it could even leave port. | was stunned because not only had | and
others already developed “successful” models by 1984 (e.g., Kvamme 1980, 1983; Parker
1985; Scholtz 1981) (Figure 1.1b and Figure 1.1c), but I believed (and still do) that (1)
the type of lawlike or rule-based statements that were advanced as “deductive” models
are practical for understanding only relatively trivial cultural processes, (2) such simple
models are unsuitable for applications owing to their comparatively low power (and in
any case none existed that could be applied), and (3) that there was a complete
misunderstanding of the role of statistical methods in applied research settings, points
that | tried to convey in my principal chapter (Kvamme 1988a). Since its publication,
along with several papers a few years later (Kvamme 1990a, 1990b, 1992), my interests
in modeling have only recently been rekindled by an unlikely source: working with
students of biology, | have become aware of a tremendous renaissance in modeling
approaches made possible by the GIS revolution, as the following sections will
demonstrate.
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1.4 Perspectives on “Correlative” and “Deductive” Models

Critics of archaeological models derived through statistical methods such as discriminant
functions or regression are wrong in assuming they are based solely on “mere
correlations.” This can rarely be the case because even the simple act of selecting
variables for analysis demands an a priori theoretical perspective that comes from
previous work, training, and exposure to the theoretical currents of a discipline. Statistical
models should most properly be viewed as a means of estimating appropriate weights for
theoretically derived variables. Without such a mechanism it is unlikely that robust
weights can be derived, resulting in models of lower power. A deductive model based on
anthropological theory, previous findings, or ethnographic analogs might define variables
relevant to past location behaviors. But without recourse to statistical calibration based on
sample data, how those variables might be combined, weighted, or thresholded to achieve
a GIS mapping becomes something of an art. A simple Boolean combination, for
example, means that each variable receives an equal and arbitrary weight of unity;
altering those weights in a more complex model implies a level of theoretical knowledge
not generally possible. Moreover, such models must perform suboptimally compared
with those with weights derived from statistical theory and suitably constructed random
samples. Making claims about the superiority of the former is therefore ironic. Dalla
Bona and Larcombe (1996) deduced an excellent suite of variables through ethnohistoric
and contemporary native informant accounts concerning prehistoric settlement in
northwestern Ontario, for example, but their GIS mapping was only possible after close
calibration of model weights against empirical archaeological distributions.

Wildlife biologists utilize GIS to map models of species distributions and habitat
(analogous to archaeological sites) with the advantage of a more mature view of the
modeling process (being firmly wedded to empirical data and possessing a statistical
tradition that goes back to the 19th century). Most biological models begin with theory,
usually meaning a list of variables relevant to the locations or habitat of the species of
interest derived from prior knowledge and work. Based on species locations observed in
field data, the resultant models, including discriminant and logistic regression functions,
give insights into interactions between variables, identify significant relationships,
confirm or refute hypothetical associations, and expose relative strengths of relationships.
Additionally, GIS mappings in the form of species probability or abundance surfaces
prove insightful because relationships between species and environment become
graphically clear, revealing the relative clumping, dispersion, or patchiness of the result
(e.g., see Bian and West 1997; Clark et al. 1993; various papers in Scott et al. 2002).
Khaemba and Stein (2000:836), for example, state outright that their models are
deductively derived because they begin with the prior knowledge that “elephants
generally prefer tall grassland and shrubby vegetation.”

How is the foregoing different from deducing that settlements of a farming culture
should be situated in well-watered valley bottomlands, near level fields with good soils?
Wheatley and Gillings (2000:166) observe that

A distinction between data and theory [driven models] is not universally
recognized, and most archaeologists accept that the two are not
independent—data is collected within a theoretical context, and so may be



Thereand back again 11

regarded as theory-laden, while theories are generally based to some
extent on empirical observations.... It is impossible in any practical sense
to implement a predictive modeling method that is based entirely on either
of these tactics.

The archaeological dichotomy that has arisen claiming distinct correlative and deductive
approaches to modeling is an unfortunate historical accident; they need not be different
but can and should be one and the same.

1.5 Theoretical Justification of Archaeological Location Modeling

1.5.1 Background Concepts

In developing models, we need to be clear whether we are trying to model the systemic
context or the archaeological context, as originally codified by Schiffer (1972). The
former refers to the living, behavioral state of a human group or society. The latter refers
to the static, nonbehavioral state of archaeological materials, the physical record that
archaeologists study. Even a perusal of the literature on modeling suggests that it is
frequently unclear which context is being modeled, despite critical differences in
assumptions, approaches, likely difficulties, and possible outcomes. Explanatory or
deductive models appear to be generally concerned with the systemic context, but from a
cultural resource management standpoint the goal clearly seems to be the modeling of the
archaeological context.

In approaching the latter, we must first recognize that if a goal of modeling is the
mapping of locations where archaeological resources are likely to occur, then logically
the equivalent is the mapping of locations where such resources are unlikely to exist. The
elimination of portions of a region that are unlikely to contain archaeological resources
becomes a useful way of approaching the modeling problem.

The definition of the niche of a species, as defined in quantitative ecology, provides a
second vital perspective. The niche can be defined as the total range of conditions in the
environment under which a population lives and replaces itself (Pianka 1974:186). In a
landmark paper, Hutchinson (1957) emphasized that the niche can be determined
empirically by measuring the location of individuals of the population along multiple
dimensions of environment, with the range defining a niche space in a “hypervolume” of
measurements. That space can be visualized as a variable probability density function
(PDF), with certain locations within it more ideal for the species than others. In fact, the
“ideal habitat” of a species can be represented by the mean vector of measurements on
each variable, as indicated by the locations of the species itself. Less desirable habitat is
then inferred as any deviation from the mean vector. (This perspective forms the basis of
an important modeling approach discussed in Section 1.7.3.) The obvious application of
this perspective to ideas of human niche spaces and settlement distributions was first
extended to the field of geography by Hudson (1969). Of more importance are the
implications it offers as a logical basis for archaeological modeling (see Kvamme, 1985
for an early attempt).
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1.5.2 A Deductive Model

Let us begin with three observations:

Observation 1: The human organism lives within the natural environment.
Observation 2: The environmental variation within any circumscribed
region is large.
Observation 3: The niche of the human organism is that portion of the
environment that it utilizes or to which it has access.

The human niche, N, may correspond with the entire environmental range, E, of a region,
where the niche space equals the environmental space, N= E. The niche space, however,
may typically include only a subset of the total environmental space, N<E, because areas
of steep slopes, cliff faces, water bodies, lava fields, glaciers, wetlands, high altitudes,
dense vegetation, and other contexts may be inaccessible or unutilized (Figure 1.2). The
level of niche space accessibility may also be partially dependent on technological level,
other cultural circumstances, and resource distributions. For example, cliff faces might
harbor an important food resource (bird eggs) that become accessible only with
appropriate technology (sturdy ropes).

Corollary 1. If N<E, then locational modeling must be productive if N can
be defined.

The analysis of empirical archaeological distributions through a host of statistical or other
means (e.g., Kellogg 1987; Kvamme 1990c) can potentially indicate favorable and
unfavorable localities. Favorable places generally correspond with specific classes of
activity, fitting well with the idea that the PDF is multimodal.

Observation 5: If we do not include simple travel between locations, then
activities are tied to places. Various types of human activity are frequently
associated with particular environmental circumstances.

Fishing occurs in or adjacent to streams or lakes and nut gathering where nuts grow, for
example.

Corollary 3. The association between particular activity classes with
specific environmental contexts dictates that modeling specific sitetype
distributions must be productive. These activity-specific “niches“comprise
small subsets, A; within the human niche space, N (Figure 1.2). Each are
determined by relatively few environmental dimensions according to
specific activity needs.
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Range of Environmental Variation

FIGURE 1.2 The human niche,
activity, and habitation spaces can be
viewed as subsets of increasing
specificity within the total
environmental range of a region.

The creation of distinct models for individual types of archaeological sites (functional,
temporal, or other) is something rarely undertaken in the literature of modeling, yet it
forms an area of certain improvement.

Corollary 4. The sum or union of all places where people concentrate
activity forms an activity space, A=2A,, that is smaller than the human
niche space (i.e., A<N) if simple travel between places is disallowed
(Figure 1.2). This forms the logical basis of Corollary 2.

Observation 6: Places of human habitation or settlement, with long-
term needs and variable activities represented, must be sited according to
many dimensions of environment dictated by the many needs of
community.
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A long-term settlement might be located according to its needs for defensibility and
proximity to water and quality of agricultural soils and level slope and fuel resources,
etc.

Corollary 5. Habitation activities with many location requirements may
be more predictable than sites of specialized activities with relatively few,
defining a comparatively small “niche.” Owing to this fundamental
difference, a habitation space, H, is defined, where H<A (Figure 1.2).

If a simple activity, A;, requires only environmental condition e; to occur, but H requires
e1Ne,NesNey, then generally H<A,.

Observation 7: People also construct a social environment that influences
locational behavior. If the natural environment defines a possible range of
conditions for the placement of activities, then the social environment
imposes further restrictions and order. Road networks and the necessity of
intersettlement spacing, for example, further alter the PDF within the
human niche space.

Corollary 6. Consideration of variables of the social environment must
be productive because the range of variation within suitable areas or
favorable spaces in the natural environment becomes further reduced.

1.5.3 Summary

The foregoing suggests that if we can view human uses of space in terms of subsets of
environmental variation, and identify those subsets as a basis for modeling, then
archaeologically useful results must be possible if we consider “useful” to mean the
elimination of regions unlikely to contain archaeological resources. Consideration of
individual site types and variables of the social environment will allow models to focus
on narrower ranges of variation, improving performance, and long-term habitations or
settlements should be highly predictable owing to their more restrictive environmental
requirements. To achieve the full potential of this perspective, a number of continuing
issues and methodological improvements must first be addressed.

1.6 The Second Age of Modeling: Continuing Issues

With nearly a quarter-century of serious work in archaeological location modeling, it is
clear that several issues, some of which may be insurmountable, remain at the forefront
of difficulties. They include the problems of modeling multiple site types,
paleoenvironmental reconstructions, and sampling issues. Lack of resolution in these
areas continues to affect the power and specificity of models and, indeed, what we are
able to model.
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1.6.1 Archaeological Site Types

A handful of lithics, a couple of sherds, or a few tools gained through a limited surface
reconnaissance does not usually allow reliable reconstruction of the kinds of activities
that occurred at an archaeological site, identification of the culture(s) that used or
produced the artifacts, or accurate estimates of the amount of activity that occurred,
length of occupation, or dates of use. This dilemma, typical of the vast majority of sites in
any region, has forced modelers to throw them into one large “pot” that can only be
labeled “human activity present,” or to ignore them, relying solely on well-dated and
understood sites. The latter tactic is undesirable because the sample size of known
archaeological locations becomes so reduced that meaningful statistical analyses become
untenable. The former is the principal reason why most models remain dichotomous (i.e.,
site-present versus site-absent).

Ethnography and common sense indicate that sites associated with various functions
are located differently: a fishing spot, a plant-gathering location, a hunter’s kill and
butchering site, and a long-term settlement will generally be located in unlike places.
Moreover, different cultural groups may have unique responses to the same environment,
with large variations in locational behavior. Finally, temporal differences between sites
may correlate with vastly changed environmental circumstances. It seems obvious that
when placing all sites in a single group for modeling, the enormous variation associated
with all human activity yields models of lower power and specificity What we end up
modeling is the sum total of the human “activity space” of Figure 1.2. In defense, it must
be noted that models of surprising power have nevertheless been created following this
simple site-presence—absence approach. Brandt et al. (1992), for example, lumped sites of
all types and periods in the Netherlands into a single class (representing a remarkable
breadth of functions, cultures, and chronology) and achieved models that performed
surprisingly well (suggesting some sort of commonality to locational behaviors or
perhaps site visibility).

Defining meaningful site types and modeling each as a separate class is probably the
greatest potential improvement to the quality of archaeological models (see Stanci¢ and
Veljanovski 2000 for an excellent example). Aside from better recording, more field
time, increased funding, retrieval of larger samples of artifacts, better analysis methods,
and improved theory that might point to site function, there appears to be few ways out of
this quandary. Larger, more permanent settlements are sometimes more visible, enabling
models of settlement location (i.e., the “habitation space” of Figure 1.2) as opposed to all
site locations (the “activity space™), a useful undertaking.

One certain area of improvement lies in removing rock shelters or cave sites from
consideration in the modeling equation. These kinds of sites were invariably utilized for a
range of activities, yet unlike all other archaeological sites, their placement in the
landscape is not dictated by human choice. Rather, the loci of rock shelters and caves are
determined by a peculiar and idiosyncratic set of geological variables, including rock
type, exposure, hydrology, terrain shape, and other factors. We can model human choices
that placed other kinds of sites in the landscape, but to model the use of rock shelters and
caves, complex geological models and variables must be pursued that undoubtedly open
up other problems. These sites should therefore not be considered with other site types in
combined modeling operations because the larger range of locational variance introduced
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will upset model performance. The best approach for handling them may simply lie in
improved mapping that locates caves and rock shelters.

1.6.2 The Paleoenvironment

Research has demonstrated significant empirical and theoretical relationships between
environment and archaeological distributions. Yet, in nearly all cases, it has been modern
environmental conditions instead of past circumstances that have been investigated. In
most regions, contemporary conditions are very different from those of the past,
especially the distant past, raising the question of just how well models based on the
present situation can predict the past. After all, it was then-contemporaneous conditions
that were relevant to locational decisions and choices made by past peoples. While it can
be argued that terrain form (and its many derivative measures) is relatively stable through
time, it is well-known that plant communities migrate up and down altitudinal clines with
climatic change and that rivers and streams wildly meander within valleys over relatively
short periods, for example.

It would seem that reconstruction of paleoenvironments is a necessary first step in the
archaeological modeling enterprise (see Kamermans, Chapter 5, this volume).
Paleoclimatic data from tree rings and other sources might be employed to model life-
zone altitudinal changes, pollen data could point to former environmental compositions,
and erosion and hydrological models could be used to reconstruct past landforms and
stream channels, for example.

When one considers that paleoenvironmental reconstructions are potentially necessary
for each time period relevant to the archaeological sites in a region, however, such a task
becomes daunting and has rarely been undertaken (for exceptions, see Boaz and Uleberg
2000; Gillings 1995; van Leusen 1993; Nunez et al. 1995). Moreover,
paleoenvironmental and paleoclimatic reconstructions are difficult and capable of only
very broad generalizations, with little specificity in terms of the point-by-point
requirements of GISbased models. (We ideally want representations of the
paleoenvironment on a pixel-by-pixel basis.) Also raised is the question of error budgets
in GIS models based on such data. Recent work has shown significant levels of error,
even in present-day maps (see Goodchild and Gopal 1989). Past reconstructions of an
environment will likely contain huge errors owing to their imprecision. Because error is
cumulative in a multidimensional model, it is quite likely that results could be unusable.
For example, even assuming an unrealistic 90% level of accuracy (however accuracy
might be defined), with only five reconstructed environmental layers, the overall
accuracy becomes .9°=.59, dismal indeed. Unless reliable paleoenvironmental
reconstructions can be generated, it is clear that we must proceed with caution. At the
same time, it might also be argued that any paleoenvironmental reconstruction, however
poor it might be, must be better than using present-day data.

Most practitioners will continue to employ present-day maps and digital data sets as a
basis for modeling, if only because of ready availability. One benefit is that map error is
at least known and quantifiable. Focus should be given to variables less sensitive to
change, such as landform characteristics. Other tactics might also be employed to
mitigate the effects of change. For example, instead of using distance measures to current
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rivers or streams (assuming proximity to water is a meaningful criterion), distance to the
edge of the floodplain might instead be considered to eliminate the effects of meandering.

1.6.3 Sampling

Most regional models necessarily employ extant records of archaeological sites from the
region of interest. Sampling biases that exist in these data sets are well-known and arise
from such circumstances as (1) the tendency of archaeologists to discover sites where
they believe they should be or in places with easier access (near roads, towns), (2) the
arbitrary but nonrandom locations of development projects that have required cultural
resource surveys, or (3) the greater obtrusiveness of larger sites and settlements (e.g.,
sites with mounds or earthworks). Models based on these kinds of databases are biased,
and entire archaeological contexts may not be well represented (see Kvamme 1988b for
ways to reduce or mitigate such biases; Wescott, Chapter 3, this volume, discusses
sampling issues).

Some archaeological projects have had the luxury and budgets to employ random
sampling designs and pedestrian surveys to procure unbiased samples for model
development (e.g., Thomas 1975; Warren and Asch 2000). Most have employed some
form of cluster sampling, conducting surveys within randomly selected blocks of large
size (e.g., 500-m squares, quartersections). One reason is convenience: it is easy to locate
a relatively small number of large quadrats on a map and on the ground. Yet, sampling
elements like archaeological sites within clusters creates negative consequences, such as
(1) reduced estimates of variability (because places sampled occur in a relatively small
number of clusters), and (2) a lack of independence between data elements owing to their
spatial proximity or the autocorrelation effect (Kvamme 1988a).

In the past decade we have moved into a very different world where we can now
accurately locate ourselves through GPS (global positioning system) technology. Let us
throw out large cluster blocks and utilize small (subhectare) parcels (or even points) for
survey and random-element sampling designs (Scheaffer et al. 1979). With preselected
coordinates, it is simply a matter of pressing “go to” on the GPS to reach a new locality,
and a survey of nearby randomly selected places can be preplanned to minimize travel
requirements. In so doing, we can attempt to attain “ideal” sampling designs that allow
meeting of statistical assumptions, permit more-representative sampling of environmental
and archaeological variability, and increase the likelihood of independence between
observations.

1.7 The Second Age of Modeling: Possible Improvements

Although much contemporary modeling work is of high quality and innovation is
apparent, other refinements seem possible in such areas as developing new variables
through GIS, utilizing new modeling approaches and algorithms, and in methods for
evaluating model performance. The following subsections offer a number of ideas,
suggestions, and new methods that might be utilized in archaeological locational
modeling.
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1.7.1 Independent Variables

Acquiring better data and variables that might bear on archaeological locations is one
domain that can improve our ability to model. As technology improves, our potential in
this area is increased. High spatial resolutions for digital elevation and satellite data mean
that we can capture more detail of the landscape that could be relevant to certain classes
of past activities, for example. Moreover, a lack of consideration of the social
environment has been justly criticized by European scholars (Gaffney and van Leusen
1995), pointing to other dimensions for improvement.

1.7.1.1 The Natural Environment

Variables that quantify aspects of the natural environment will generally remain most
important in archaeological location modeling owing to their ready availability in digital
or map form and their importance to human locational behavior. In general, we need to
move beyond simple terrain variables like slope and aspect, or linear distances to blue-
line water features on maps. We now have access to powerful GIS tools that offer
potentially more. We should pursue quantification of subtle variations in terrain shape
and complexity, identify local high points and saddles (Duncan and Beckman 2000),
quantify solar insolation, terrain texture, and local relief changes above and below
locations for possible relationships with past activities, particularly in hunter-gatherer
contexts. Llobera (2000) and Bell and Lock (2000) reveal great improvements in
modeling movement over the landscape; perhaps it is now time to move beyond simple
linear proximity measures.

One particular area of promise lies in drainage runoff algorithms that objectively
define flow based on landform shape in DEM (Burrough and McDonnell 1998:193-198),
allowing movement away from the frequently subjective and arbitrary blue-line features
on topographic maps. They allow quantification of accumulated flow to any pixel in a
region; simple reclassification methods can then define drainage networks of any rank or
complexity for proximity-based analyses. The continuous scale of accumulated flow
itself might also be of interest.

Vegetation and biomass-biocomplexity diversity indices derived from satellite
imagery are yielding much insight into patterns of regional plant productivity and health
(Sabins 1997:404). They have been largely ignored in archaeological modeling (see
Gisiger 1996, however), despite their apparent potential, particularly in the large tracts of
land in the Americas and elsewhere little changed from recent prehistory.

1.7.1.2 The Social Environment

Social variables typically refer to characteristics of the human-created environment. In
complex societies it is markets, central places, intervillage spacing, road networks,
political boundaries, and the like that drive uses of space. The relative importance of the
natural versus social environments to locational behavior strikes some sort of balance,
with one or the other more important, depending on needs and the nature of activity
requirements. In general, we might imagine a continuum where the relative influence of
these domains is a function of cultural-technological complexity (Figure 1.3, while
realizing that such a generalization may not apply to Bongo-bongo). While both are
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important to any society, in hunter-gatherer contexts the social environment probably is
less so, if only because there frequently are no

Hunter- Chiefdoms/ Modern Techno-

Early

gatherers Farmers States nation States

Importance to
Location Behavior

Cultural Complexity

FIGURE 1.3 The relative importance
of natural versus social environments
to locational behavior is related to
cultural complexity.

markets, central places, road networks, and related phenomena that characterize settings
of greater cultural complexity.

Social variables have rarely been employed in archaeological location modeling
(Gaffney and van Leusen 1995). One reason lies in data availability. Maps of the natural
environment (albeit the present environment) are easy to obtain, and frequently can be
instantly downloaded through the Internet. This is not true of social variables, where the
loci of contemporary villages, markets, religious centers, or roads are frequently difficult
to obtain for past times. In general, it is only in well-studied archaeological regions
where, after decades of work, a reasonable semblance of past social landscapes can be
reconstructed. Yet, even in these ideal contexts, such reconstructions are likely only
partial: missing villages, road segments, or unknown political boundaries are likely (see
Vermeulen, Chapter 14, this volume).

A somewhat more subtle issue lies in the need to establish contemporaneity between
features in the social landscape. Measuring proximity to a road or political center is only
relevant if those features are coeval with the social milieu being modeled. This
requirement further restricts consideration of many social variables to well-studied
archaeological regions with good chronological control. Madry and Rakos (1996) were
able to model prehistoric travel routes based on the arrangement and viewsheds of a
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series of contemporaneous Celtic hill forts in France. Chadwick (1978, 1979) was even
more restrictive by modeling Late Helladic settlement distributions based on the
distribution of settlements in preceding periods in Mycenae.

Obviously, archaeological location models that fail to address the social dimension
owing to a lack of data or effort only get at a portion of the variability in past site-
selection behaviors (Corollary 6, above): that portion related solely to the natural
environment, which can be small (Figure 1.3). Recent debate and applications in this
area, particularly by Europeans (with generally better knowledge of archaeological
regions), are therefore encouraging (Gaffney and van Leusen 1995; Gaffney et al. 1995;
Stanci¢ and Kvamme 1999; Wheatley 1996).

1.7.2 Other Modeling Algorithms

With the growth of GIS technology and its ready acceptance by government, industry,
and academia, together with intense focus on regional modeling in other disciplines like
biology, medical science, and economics, there has been a remarkable explosion in
modeling methods and algorithms in the past decade. Approaches in this literature range
from simple Boolean intersections, to additive binary layers, weighted additive layers,
fuzzy versions of the foregoing, Dempster-Shafer models, log-linear and logit models,
dominant-category clustering models, neural-network algorithms, Mahalanobis D?
statistics, suites of classifiers from image-classification methodologies like maximum
likelihood, and the ever-popular discriminant functions, including logistic regression, to
name a few (e.g., Bian and West 1997; Clark et al. 1993; Eastman et al. 1995; Gabler et
al. 2000; van Manen et al. 2002; Vila et al. 1999; Wang 1990).

Despite this great variety of available approaches for modeling many types of spatially
distributed phenomena, there has been relatively little variation in the archaeological
literature in the methods that have been employed. Logistic regression, a robust
nonparametric classifier, has been particularly popular in archaeological model
development, as has discriminant-function analysis, the parametric alternative (Parker
1985; Scholtz 1981; Kvamme 1983, 1988a; Warren and Asch 2000; Wheatley and
Gillings 2002:172). Both are examples of linear statistical models, and even here, recent
improvements exist. Generalized additive models (GAM) appear to offer a significant
advance over the generalized linear model, for example, because they replace the linear
component of the model with an additive one that identifies and describes nonlinear
trends and threshold effects, which are far more common in nature than linear ones
(Hastie and Tibshirani 1990).

1.7.3 Forget Those Nonsites: Single-Class Approaches

As a means of modeling the archaeological context, the two-class approach can be
justified because there are places that contain material evidence of past activities
(archaeological sites) and others that do not (nonsites). Yet, even if thorough field
investigation fails to encounter archaeological evidence at some locus, there is a nonzero
probability that archaeological remains may actually be present; for example, they might
be buried, be lying under vegetation, or simply have been overlooked.
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A similar perspective arises in the modeling of biological species occurrence. Much
like the archaeological site present-absent dichotomy, such studies employ sightings or
radiotelemetry on tagged animals to compare their presence-absence against mappable
habitat variables in GIS settings. Logistic regression-based and other probability surfaces
are then developed for species presence (Bian and West 1997; Dettmers et al. 2002).
Argument has recently been vigorous against use of a species-absent class for model
calibration, however, because the lack of a den or nest at the time of a field investigation
does not imply its absence in times past or future (Clark et al. 1993; Dettmers and Bart
1999).2 This quandary has led to alternative modeling approaches of great power that fit
well within long-held theoretical perspectives stemming from perspectives on niche (as in
Figure 1.2).

These approaches focus on a single species-present class (analogous to an
archaeology-present class). Calibrating to a species-present sample, the mean on any one
environmental variable represents an estimate of “ideal habitat” for that species on that
variable; in a multivariate context, it is the mean vector p that represents ideal habitat
across a series of variables. Less desirable habitat is inferred by any deviation from ,
agreeing well with the classic species niche model developed by Hutchinson (1957) that
emphasizes an ideal “niche-space” within an n-dimensional hypervolume of relevant
envi-ronmental parameters. The most common metric for evaluating locations in this
perspective is the Mahalanobis distance statistic (in matrix notation)

D?=(x—H)'Z-1(x—H)

which is interpreted as a squared normalized distance between a location’s measurements
(x) and p (X is the variance-covariance matrix). While D? is a valid metric on its own, it
tends to be highly skewed, and a y transformation allows a 0-to-1 rescaling that, if
multivariate normality is assumed, can be interpreted as a p-value analogous to a
posterior probability obtained with more-conventional discriminant or logistic regression
functions. These D? or p-values are then mapped by GIS on a pixel-by-pixel basis,
yielding a “deviation from ideal habitat” or a species-probability surface, respectively
(e.g., Clark et al. 1993; van Manen et al. 2002).

While offering an alternative to more-conventional and -accepted methodologies, this
approach presents its own series of problems. One cannot undertake a stepwise F-to-enter
solution, for example. One has to know which variables are relevant and go with them,
but this does not appear to be a problem in the biological sciences. As alluded to earlier,
variables selected are typically derived from a priori theoretical ideas.

1.7.4 Models of Greater Specificity

Environmental variation in large project areas can be enormous, and past human
adaptations and uses were undoubtedly numerous. Given the size of some projects (e.g.,
whole states and significant proportions of Canadian provinces), gradients or differences
in cultural practices, or even cultural types, might occur, and variables relevant in one
subarea might not even apply to another. A model fine-tuned to the more limited
variation of a small region should theoretically better “fit” that region’s cultural and
environmental variability compared with a global model that can only “average”
relationships over huge areas. To illustrate, | built one logistic regression model using all
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data from a 600-km? region, and then a second model using data only from an 8.5x5.5-
km subarea. The model for the latter, because it dealt only with the archaeological and
environmental variation in the subarea, offered a much better fit with the data, and all
performance indicators were markedly higher (Figure 1.4; Kvamme 1988a).

One might therefore consider partitioning a large project area into a series of small
blocks and building a fine-tuned model for each. Such distinct and independent models
would undoubtedly perform better, but arbitrary “seams” or discontinuities in model
results would likely occur at borders between the individual blocks. Such effects arise
from environmental and archaeological differences between the blocks, resulting in
reduced interpretability and quality of presentation. (Defects like massive jumps in
estimated archaeological probabilities can only be explained by the arbitrary locations

(a} (b

FIGURE 1.4 Archaeological
probability surfaces obtained through
logistic regression analyses of open-air
lithic scatters in an 8.5x5.5-km (46.75
km?) study block in southeastern
Colorado (after Kvamme 1988a). (a)
Model derived from all open-air lithic
scatters (n=269) and environmental
variation in a larger 600-km? project
area, (b) Model derived only from data
occurring within the smaller study
block (n=95). (c) Distribution of
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known open-air lithic scatters in study
block. Black signifies high
archaeological probabilities.

of boundaries between the study blocks.) With the significant computing power at hand
today, an alternative approach may be workable. A moving window, kilometers in
diameter, could potentially be employed to build a model utilizing data that only occur
within it. The window would then be centered location-by-location throughout the project
area, causing model results at each locus to be based on environmental and
archaeological characteristics that are the most relevant, resulting in models of greater
specificity. Other benefits could potentially accrue from such an approach. Mean vectors,
confidence coefficients, and model parameter estimates within each window could be
mapped and examined over space. Variations in the relative sizes and signs of regression
coefficients, for example, could point to the relative importance of particular variables as
environmental and archaeological circumstances change across a region.

1.7.5 Measures of Model Performance

It is uniformly agreed that a model must be tested before one can place reliance in it, and
this stricture should apply to any model regardless of its means of derivation. Various
methods of resampling (e.g., cross-validation, jackknifing, bootstrapping) have been
developed that can provide robust estimates of performance (Verbyla and Litvaitis 1989).
The ultimate test, however, is against samples independent of those used to develop a
model. While these points have been well belabored before (Kvamme 1988a; Warren and
Asch 2000), a number of alternative performance statistics can greatly enhance
interpretation of various model qualities.

Our goal is the modeling of archaeological phenomena across space, yet our focus is
not on the archaeological site but on the location and whether or not a site is likely to be
present. (The location should be regarded as a point on the landscape.) Let event S signify
the actual presence of an archaeological site (or whatever archaeological phenomenon is
of interest) of a type we wish to model at a location. S’ then indicates the absence of such
a site at a location. An archaeological model can be regarded as a collection of irregular
polygons that are mapped onto the landscape that indicate locations that are “favorable,”
“likely,” or “probable” to contain an archaeological site of the type(s) being modeled. Let
M denote the event that a model, however derived, assigns a location as “likely” for the
site type of interest. M’ is its complement, meaning that the site type is unlikely according
to the model. M and M’ therefore represent the GIS mapping of model predictions, but it
must be discrete for this formulation. If a model mapping is continuous (as in a
probability surface) or ranked (e.g., polygons indicating variations in archaeological
likelihood), a GIS reclassification must be made at some threshold to achieve M and M".
Models with continuous or ranked outcomes therefore have the advantage that statistics
may be generated under a variety of thresholds and graphed to yield richer and more
insightful performance indications (e.g., see Kvamme 1992; Warren and Asch 2000).

Most modelers focus on percent correct statistics for known archaeological site
classes, or 100 p(M|S) (the probability that a model specifies a site when one is known to
actually be present; the “|S” means “given” that a site is present). It is obtained simply by
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working out the percentage of known sites that a model gets right. The p(M|S) can be
referred to as “model accuracy” for the archaeological class. Other statistics yield
additional insights about performance.

The probability of S, the archaeological phenomenon of interest, can be estimated by
p(S)=(total area of all known sites in class)/(total area field surveyed).® Its value is
extremely important; it indicates the base rate or a priori chance that the archaeological
phenomenon of interest will occur at some location (Kvamme 1990a). Its meaning can be
grasped if one considers throwing darts haphazardly at a map; the chance of a dart falling
on a site of the type of interest is p(S). It is frequently difficult to estimate when
examining regional literature because relevant data are seldom published. Values | have
been able to compute in North American surveys range from about .001<p(S)<.04,
signifying that archaeological phenomena may be regarded as rare events in most regions
(forming a principal reason why robust archaeological models are challenging). The p(S)
should be regarded as a base model that our efforts must beat. Stated differently, any
model must yield p(S|M)>p(S); otherwise, it is worthless (where p[S|M] indicates the
probability of a site given that a model specifies a site; see Kvamme [1990a]). Obviously,
for rigorous statistical treatment, the sites used to estimate p(S) should ideally have been
discovered by a program of random sampling, but a ballpark estimate can also offer
useful insights. The p(S") =1-p(S) is the probability of the site class being absent at a
location, typically large in value.

The p(M) is the base probability that a model indicates a site, determined by the area
of its mapping: p(M)=(total area mapped by model to event M)/(total study area), a trivial
computation with GIS. In other words, if p(M) =.3, then we would expect even a
worthless model without predictive capacity to correctly specify about 30% of the sites in
a region by chance alone, simply because it covers 30% of the region’s area. The p(M) is
related to the precision of a model because it represents the proportion of a region
mapped to event M, and one goal is to minimize that area to produce models of greater
specificity. We might therefore define model precision as p(M")=1 —p(M); the higher its
value, the more precise (or smaller the region) is a model’s mapping. The ratio p(M)/p(S),
also related to precision, can be regarded as an index of model fit. It indicates how many
times larger the area of a model’s mapping is for a site class (M) compared with the
actual estimated area of the site class (S). Although we wish this ratio to be small, values
might typically range between 20 and 100, pointing to the imprecision of most models,
but also to the fact that although many locations possess characteristics typical of sites,
they do not contain one owing to low site densities or small p(S).

It is emphasized that one can make p(M)=1 by mapping every location in a region to
M to achieve a perfectly accurate model where p(M|S)=1. (Because every location is
classified as “site likely,” all archaeological sites are correctly indicated.) In this case,
however, model precision p(M")=0, and we have a worthless model. A useful statistic is
therefore p(M|S)—p(M), which signifies the improvement over chance a model offers,
after correcting for its area. For example, a model that correctly indicates 75% of known
sites (p[M]|S]=.75) in a mapping that covers only 30% of a study region (p[M]= .3)
represents an improvement over chance of 45% (p[M|S]—p[M]=.45).

Other statistics pertain more to archaeological-class discovery probabilities. The
importance of p(S|M)>p(S) was previously emphasized; the ratio p(S|M)/p(S) is therefore
meaningful. It should be greater than unity and indicates how many times better than
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chance the probability is of an archaeological site when the model indicates one. The
p(S|M"), the probability of an archaeological site given that the model indicates its
absence, is also a noteworthy statistic. It should be less than p(S) at any locus, and the
ratio p(S)/p(S|M’)>1 should occur, indicating that when a model does not indicate an
archaeological site, the probability of one occurring is less than the base-rate probability,
p(S). Finally, the ratio p(S|M)/p(S|M’) is one of the most significant computable statistics
because it indicates how many times more likely an archaeological site is when a model
(M) indicates one compared with when it does not (M’). A summary of these statistics is
given in Table 1.2, and a worked example with typical application numbers is given in

Table 1.3.

TABLE 1.2 Derivation and Interpretation of Model
Performance and Related Statistics

Statistic Derivation Interpretation
p(S) From survey data: (total area of Base rate or chance probability of
site class)/ (total area field archaeological site class in study region
surveyed)
p(M) Determined exactly by GIS: (total Base rate or chance probability that a model
area of model)/(total study area) will indicate a site; proportion of study region
mapped to M
p(M") 1-p(M) Model precision; high values indicate high
precision
p(M)/p(S) Ratio Model fit; indicates how many times larger a
model mapping is than the total site-class
area
p(M|S) Estimated by proportion of known Model accuracy; probability that a model will
archaeological sites correctly correctly indicate a site: 100xp(M|S)=
specified by model percent correct
p(S|M) Estimated by proportion of Probability of archaeological site presence
locations in M that contain when model specifies a site
archaeological sites
p(S|M’) Estimated by proportion of Probability of archaeological site presence
locations in M’ that contain when model does not specify a site
archaeological sites
p(M|S)—p(M)  Subtraction Improvement that model offers over chance

PSIM)/p(S)

P(S)/p(SIM’)

Ratio

Ratio

p(SIM)/p(S|M") Ratio

in specifying known archaeological sites

Model improvement ratio; indicates how
many times more likely a site is in M than the
base-rate site probability

Model improvement ratio; indicates how
many times less likely a site is in M’ than the
base-rate site probability

Madel imnrovement ratin® indicates how




GIS and archaeological sitelocation modeling 26

many times more likely a site is in M versus
M!

1.7.6 Significance Tests

Assuming a random sample for the archaeological site class, one-sample (and one-tailed)
tests for differences in proportion (Conover 1999) may be applied to test Ho:
p(M[S)<p(M) or Hy: p(SIM)<p(S). The latter hypothesis is a more difficult one to test,
however, because the typically low values of p(S) and p(S|M) and the relatively small
difference between them demand large samples to minimize the probability of a Type Il
error. Values of p(M|S) and p(M) are typically much more central, and large differences
in values usually are achieved in even mediocre models. Archaeological samples used in
testing should be independent of the model (i.e., not used in model development).

TABLE 1.3 Example of Derivation of Model
Performance Statistics

Actual Circumstances

S S’
M p(sNM)=.0085 p(S'NM)=.3915 p(M)=.4
M’ p(sr|M"=.0015 p(SNM")=.5985 p(M)=.6
Model Predictions p(S)=.01 p(S)=.99 1.00

Derivation of cell data:

If model accuracy is p(M|S)=.85, then p(SNM)—p(M|S) p(S)=(.85)(.01)=.0085

The remainder of the table is completed by subtraction because:

* p(SM")=p(S)—p(SNM)

* p(S'NM)=p(M)—p(SNM)

* P(S'NM)=p(s)—p(S’ NM)=p(M)~p(S"M)

Derivation of other statistics:

* p(M)=1-p(M)=1-A=.6 (model precision: 60% of region eliminated as unlikely to contain sites)

* p(M)/p(S)=.4/.01=40 (model fit: its mapping is 40 times larger than the likely total site area being
modeled)

* p(M|S)—p(M)=.85—A=.45 (model gives .45 improvement over chance)

* p(S|M)=p(SNM)/p(M)—.0085/.4=.0213 (probability of site when model indicates one)

* p(S|M")=p(SNM")/p(M")=.0015/.6—.0025 (probability of site when model does not indicate one)
* p(S|M)/p(S)=.0213/.01=2.13 (site is 2.13 times more likely in M than base-rate chance of site)
* p(S)/p(S|M)=.01/.0025—4 (site is four times less likely in M’ than base-rate chance of site)

* p(S|M)/p(S|M)=.0213/.0025=8.52 (site is 8.52 times more likely in M than in M")
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Note: Model performance statistics are derived assuming that the regional a priori probability of an
archaeological site is p(S)=.01; that the model maps 40% of the region to the site class, p(M)=.4;
and that the model correctly indicates 85% of known sites, p(M|S) =.85.

1.7.7 Confidence Intervals

Percent correct statistics (e.g., 100 p[M|S], 100 p[M|S]) and estimated site class
probabilities (p[S]) used in model evaluations should routinely be associated with
binomial confidence limits, provided that the samples can be regarded as random
samples. This is rarely done despite early example applications (Kvamme 1988a, 1992).
Such data gives an idea of the variability associated with each estimate.

1.7.8 p(S) Is Not Constant

Foregoing discussions assume p(S), the base or a priori probability of an archaeological
site class, is constant in a study region. Yet, it undoubtedly also varies, like everything
else, within the confines of a project area. There are many examples in the literature
where high archaeological densities might occur in one area, while other regions tend to
be relatively devoid of sites. Instead of computing p(S) once for an entire region and
treating it as a constant, we now have the ability through GIS to compute it continuously
within an extended neighborhood to produce a p(S) surface, allowing its treatment as a
model parameter (p[S] could be computed much like a local site-density surface within a
moving window of, say, a 5-km radius). The result could then be combined through
Bayesian methods with model outcomes based on environmental or other relationships,
acting much like a weighting effect, improving the overall model.

Unfortunately, the p(S) is a function of known archaeological densities and therefore
subject to wide errors in its estimation stemming from small samples and sampling
biases. Reasonable sample sizes and distributions of extant archaeological sites across
regions must be present to explore this approach.

1.7.9 Issues of Scale: Near and Far Perspectives

The importance of scale when considering human land use and settlement choice has
been emphasized by several authors, including Allen (1996) in a study of Iroquoian
settlement. Variations in climate, soils, and food resource densities are seen to influence
use and habitation at global and regional levels, while local on-site conditions such as
slope and proximity to water dictate immediate site placements. Jochim’s (1976)
overview of hunter-gatherer settlement choice suggests much the same thing: high
resource densities in a region might initially attract human groups, but the specific
characteristics of individual locations dictate actual camp or settlement selections. Other
examples can be found in ethnography (e.g., Western and Dunne 1979).

It might therefore be argued that there are at least “near” and “far” scales of
phenomena that influence human settlement choice. It is not just variation at the
immediate on-site level that accounts for regional archaeological patterning, but the
distribution of resources, soil type, climate, and other factors at a wider scale. For
example, we can imagine that high densities of game or ripening nuts, good soils for
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crops, or ready availability of water might draw people to a particular valley, but
immediate settlement choice is dictated by the characteristics of a particular place: its
accessibility, slope, shelter quality, proximity to water and fuel, view, defensibility, and
so on. Most archaeological models have focused only on variation at immediate
locations, typically on a cell-by-cell basis in a raster GIS of high spatial resolution (e.g.,
Brandt et al. 1992; Custer et al. 1986; Dalla Bona and Larcombe 1996; Hobbs 1996;
Kvamme 1988a, 1992; Parker 1985; Scholtz 1981; van Leusen 1993; Warren and Asch
2000).

The variable a priori probabilities within large-radius windows of the previous section
might be one way to incorporate regional variations within site-specific locational
models. Alternatively, “far” perspectives could be explicitly incorporated within
modeling efforts. One tactic might utilize variables that quantify variation within large
areas (e.g., temperature or rainfall data, biomass/bioproductivity, soil quality with a 10-
km radius) simultaneously with site-specific or “near” variables. Another might be the
development of distinct near and far models that are later combined through Bayesian or
other methods. With the former of high resolution and focusing on variation at immediate
locations (e.g., 30-m pixels), the latter might employ pixels 5-km in size or larger and
more global variables that can get at modeling gross variations in site densities and the
question of why certain regions seem to have been more preferred in the past than others.

1.8 Conclusions: Direct Discovery Methods

Perhaps we are going about the process of archaeological site discovery all wrong.
Instead of trying to model past human locational behavior based on sometimes
questionable theoretical assumptions or empirical relationships found in often-poor
samples, why not try to directly locate archaeological sites through other means? After
all, technology is marching forward faster than we can either imagine or grasp, and there
are a host of new remote sensing methods within easy reach.

Suppose we could just fly through the air and simply record information that leads to
the identification of archaeological sites? We have actually been able to do that for nearly
a century through conventional aerial photography where the regular geometric shapes
common to human settlements (square, circular, oval, rectangular, and linear features) are
easily recognized. In Europe, aerial archaeology is a commonplace tool and is probably
the most productive site-discovery method employed by archaeologists (see Wilson
2000). Yet, it is relatively unutilized and rarely recognized as such in North America,
despite pioneering efforts in the Southwest and elsewhere by Charles Lindberg in the
1920s (Avery and Berlin 1992:226-227). In addition, we now have access to similar
imagery from space, in the form of IKONOS and Quickbird satellite data, for example,
with global coverage at spatial resolutions at 1 m or better, yielding results nearly as
detailed as aerial photography (see Fowler 2002; Hritz, Chapter 19, this volume).

Whether from the air or space, high-resolution panchromatic or multispectral data
offer enormous potential for detecting and locating archaeological resources over broad
areas. Besides discovery through direct visualization of settlement components, past work
has demonstrated that human occupations leave characteristic spectral signatures
detectable in air and space imagery (e.g., Custer et al. 1986). In other words, predictive
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archaeological models of high power can potentially be developed from air or space
remote-sensing data alone. Furthermore, the very methods that form the core of current
approaches to archaeological modeling—various statistically based discriminant
functions—are central to the methods of digital image classification that are employed to
identify such features in remotely sensed imagery. Sadly, almost no effort has been
invested in this line of research. Yet, owing to the frequently lackluster performance of
many of our current archaeological models, it is incumbent on us to utilize every means,
and every angle possible, to develop robust models for locating sites of our cultural
heritage. From a statistical standpoint, there is little difference whether one associates site
locations with an infrared wavelength band or a terrain slope layer, and there can be
significant information in spectral data that can lead to more powerful models. We might
ultimately imagine a hybrid approach, where models based on remote-sensing data are
combined with models based on more-conventional environmental and other
relationships to develop powerful tools for this task.

I believe we should and will turn increasingly to direct discovery methods for locating
and mapping archaeological sites, for they can provide useful information in many
contexts, and the various technologies are only going to improve. But where is the
“theory” here; where are the “deductions”? In the end we must ask ourselves: “what are
we trying to do?” Are we trying to find, map, and manage our planet’s cultural heritage,
or are we trying to develop cultural theories of location choice? The answer can be either
one or both. We must recognize both to be valid in sometimes complementary pursuits.
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Notes
1. This experiment was dreamed up by my good friend Michael G.Spitzer, now at Washington
State University.
2. Because the archaeological record is static, our situation is somewhat different.
Archaeological evidence is either present or absent at a location; it is only unreliability in our
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3. If site-area data are unavailable, a typical or average site area might be employed for each site
of the type of interest.
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Enhancing Predictive Archaeological
Modeling: Integrating Location, Landscape,
and Culture

Gary Lock and Trevor Harris

2.1 Introduction

There is a beguiling aura surrounding predictive archaeological modeling that is
compelling. This allure has been reinforced in recent years by the scientific and
technological legitimation provided by geographic information systems (GIS). Using
knowledge of the environmental variables that “first influenced the activities of original
inhabitants,” GIS layers are produced that identify locations where combinations of
environmental variables match the patterns observed at known prehistoric sites (Kuiper
and Wescott 1999:1). Thus, high-potential areas of prehistoric sites can be identified
using environmental data from known archaeological sites in a region that corresponds
well with known sites (Kuiper and Wescott 1999:2). While most developers of such
predictive models acknowledge limitations in their analysis, and of predictive
archaeological modeling in general, there can be no doubt that in North America these
models are seen to “provide planners with a guide showing areas that would likely
require less time, effort, and money to develop from a cultural resource compliance
standpoint” and to augment and prioritize areas for “evaluation, monitoring, or
mitigation” (Kuiper and Wescott 1999:2; Wescott and Kuiper 2000). In other cultures,
however, landscape analysis has taken an alternative route that reflects differing
epistemological approaches to landscape archaeology. This chapter seeks to explore such
differences in the approaches to landscape archaeology and predictive modeling. The aim
is to identify strengths and weaknesses in archaeological predictive-modeling approaches
and to suggest enhancements to modeling methods that incorporate cultural and
humanistic archaeology as well as environmental factors in the modeling process.

The history, theory, method, and application of archaeological predictive models have
been well publicized in several valuable texts, and it is not our intent to review such
studies in this chapter (Kohler and Parker 1986; Judge and Sebastian 1988; Wescott and
Brandon 2000). Nor is it our intent to denigrate such models, for there has clearly been a
demand for such tools from planners and cultural resource managers faced with the
daunting task of identifying prehistoric cultural sites while constrained by limited
resources and tight timelines. Faced with these realities, the end is seen to justify the
means. There are, however, certain tensions and issues associated with these approaches
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that we seek to clarify and use to point toward an archaeologically more sensitive
approach to GIS-based archaeological predictive modeling.

2.2 ldentifying the Tensions: Predictive Modeling and Landscape
Archaeologies

In seeking to identify the tensions that exist within the wider context of landscape
archaeology and archaeological predictive modeling, we draw attention to the differences
that exist between landscape archaeology in the U.S. and the U.K. When reviewing a
group of papers on landscape archaeology, the British archaeologist Barbara Bender went
so far as to identify an “Atlantic divide” between approaches to these topics in Britain
and America (Bender 1999). We suggest there is value in exploring the nature of this
divide and the tensions between the alternative approaches taken in the two countries as a
basis to proposing approaches that may begin to close not only the cultural gap, but
contribute to next generation GIS predictive models.

Central to these tensions and the cultural “divide” are the demands of cultural resource
management (CRM) to which predictive modeling is, and always has been, a
handmaiden. Driven by the constraints of CRM, predictive modeling was developed to
answer very specific questions that view the landscape as a current economic resource.
The political, economic, and administrative context within which CRM archaeologists
work defines their concerns based on landscape as now, that is, the recording and
management of archaeological sites, usually within a legislative framework based on
contemporary administrative perceptions of space, as well as “what exists where,” In
sharp contrast to this is the development of landscape archaeology, which incorporates a
diversity of approaches that, in essence, explore the landscape as then, where the focus is
on explanation and interpretations of past landscape understandings.

Interwoven within these arguments are other strands, of which two are relevant here.
The first such strand concerns the role of technology and, in particular, the increasing
reliance on, and dominance of, GIS. The development of predictive modeling and its
application were a major area of interest predating GIS, as shown by a survey in 1986
that cites over 70 papers on the topic (Kohler and Parker 1986). Importantly then, the use
of GIS has not determined the underlying philosophy of predictive modeling, but there
can be no doubt that it has now become so embedded within predictive archaeological
modeling that the technology itself must now be considered an essential part of the
predictive methodology and the framework within which CRM now operates. The social
practice of CRM and predictive modeling is now structured around the use of GIS and
must acknowledge the epistemological issues that surround the use of this technology.

The second strand involves the development and use of archaeological theory and all
of the complexity that this involves. To use a very simplistic caricature as a vehicle for
the argument: the tensions are created by the differences between the applied scientism of
processual archaeology and the attempted humanism of postprocessual approaches.
Bender suggests that “the need to retain a strong scientific methodology” is evident in
American landscape archaeology and is largely responsible for the “divide” (or at least
the papers she was reviewing [Bender 1999:632]) and has reinforced the move toward
predictive modeling. Processual archaeology heavily utilizes formal models and
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modeling philosophy, such as site-catchment analysis and systems theory, and predictive
modeling is one continuation of this intellectual tradition. The adoption of GIS in the mid
to late 1980s, and especially the suitability of the raster data structure that facilitated the
application of predictive modeling at a regional scale (Kvamme 1990), reinforced the
methodology so strongly that theoretical development in other areas of landscape
archaeology were largely overridden.

The emphasis on a quantitative methodology was at odds with humanistic approaches
to landscape that were emerging contemporaneously, as exemplified in Tilley’s
influential A Phenomenology of Landscape (1994). The essence of this dichotomy is
often crystallized as one of space versus place. Space is characterized as a void in which
human activities are carried out. It is treated as the same void everywhere and at any
point through time, a neutral backdrop for processual spatial modeling. Place, on the
other hand, is a culturally defined locale that acts as a medium for action and is part of
human experience and activity. Places are fluid and capable of taking on different
meanings at different times, but they are always formative within personal and social
activities. This juxtaposition of traditions forces us to confront the qualitative complexity
of social landscapes and the quantitative reductionism of formally modeled space.

There is a large literature on humanized approaches to landscape, albeit with a strong
theoretical theme (see, for example, Tilley 1994; Hirsch and O’Hanlon 1995; Ashmore
and Knapp 1999; Thomas 2001). It is because these approaches are so explicitly
theoretical that they create such a challenge for GIS applications generally and predictive
modeling in particular. Whereas processual models are relatively methodologically
concise and reproducible within a GIS context (through buffering, overlaying, and
statistical tests of association, for example), the text-rich description that forms the basis
of postprocessual landscape work is focused on descriptive theory rather than
methodology These concerns fed into the now well-rehearsed arguments about GIS
heralding the return to environmental determinism (Gaffney and van Leusen 1995), a
critique that landscape archaeology has tried to address but that seems to have left
predictive modeling largely unmoved. This dichotomy between theory and practice in
landscape archaeology has been confronted since at least 1993 (Wheatley 1993) and has
produced a growing literature concerned with the theorizing of archaeological GIS
(encapsulated within Wheatley 2000; Wise 2000). It must be said, however, that progress
is slow and there are actually very few innovative applications that have moved very far
beyond the theorizing (Lock 2001).

Of course, GIS is a technology that operates within wider arenas, and the elaboration
of tensions concerning its epistemology is not unique to archaeology. The GIS and
society debate, which addresses the role of GIS in society, seeks to identify the
assumptions, principles, and practices affecting the way in which analysis and the
acquisition of knowledge is pursued through GIS. Two general themes within this debate
form an important background to the more specific interests of predictive modeling that
is now almost entirely GISdependent (Lock and Harris 2000). The first theme concerns
the nature of the data and argues that data do not exist but are created. Data are a social
construction, and the “for whom, by whom, and for what purpose” is based within a mix
of social, political, and economic contexts and interests (Taylor and Overton 1991). The
second theme concerns the potential exclusion of much information from GIS because it
is qualitative in nature and not capable of being measured and represented by the spatial
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primitives of point, line, or polygon. The GIS and society discourse recognizes that
alternative forms of knowledge representation are crucial to understanding the nature of
place and are largely excluded from GIS, resulting in a single “capturing” of an official
view of reality that is heavily biased toward a scientific data-driven representation (Mark
1993). Indeed, it has been argued that one reason why GIS has been so spectacularly
successful is because it represents a single noncontradictory view of the world (Harris et
al. 1995). This is of particular interest to predictive modeling within national and regional
CRM systems and their ability, or inability, to incorporate alternative views of the past
within a seemingly inflexible quantitative GIS.

This dichotomy, between a GIS-based predictive modeling and landscape theory, in
essence focuses attention on how people and nature are represented within GIS. It is of
interest here to consider the ideas of Michael Curry in his book Digital Places: Living
with Geographical Technologies (Curry 1998). Curry classifies GIS into PaleoGIS and
GIS,. PaleoGIS represents most current GIS applications, and certainly most
archaeological GIS, which are defined by their underrepresentation of the basic elements
of human experience that give meaning to the world. The challenge is to move toward
GIS,, and this aspect is further explored below.

2.3 The West Virginia Predictive Model

To illustrate and develop these points further, we briefly recount here a predictive-
modeling study undertaken by one of the authors in West Virginia as part of an
environmental impact assessment project associated with a proposed high-power 765-kV
transmission line crossing West Virginia into Virginia. To comply with Section 106
legislation and to support CRM efforts, a predictive model was developed (Gozdzik
1997). The model drew upon similar predictive models developed elsewhere that were
adapted for use in southern West Virginia (see, for example, the Fort Drum, NY study by
Hasenstaab and Resnick [1990]). Known historical and archaeological sites were
identified from state records, and two models were constructed to identify the spatial
probability of prehistoric and historic sites in the region. Similar approaches were used in
both the prehistoric and historic studies, but for the sake of brevity only the former is
discussed here. Some 588 known prehistoric sites were located on GIS maps. For each
site, four environmental parameters related to distance of site to water, site slope, site
elevation, and site soil type and drainage (based on
http://www.nrcs.usda.gov/technical/techtools/ststsgo_db.pdf STATSGO data) were
identified and the details extracted from the GIS (Figure 2.1 [State Soil Geographic Data
Base]). Using exploratory data analysis, the environmental factors associated with the
known archaeological sites in the region were explored through the analysis of univariate,
bivariate, and hypervariate distributions. Based upon a graphical intuitive approach
(GIA), a classification of three groups was devised, as detailed in Table 2.1. The GIA
draws heavily on a review of parameter distributions and relationships, but it also enables
an intuitive understanding of the archaeology of the region to influence the selection of
threshold boundaries, as in Table 2.1. The environmental parameters reflect the known
archaeology of the region in that, put simply, most sites can be found close to sources of
fresh
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FIGURE 2.1

Constructing the West Virginia
predictive model based on
environmental variables (a, b),
resulting in a site-sensitivity model for
prehistoric sites (c, d).

water, on land of shallow slope, on well-drained and fertile soil, and at low elevations.
Three site-density categories were identified comprising locations of high, moderate, and
low probability of locations containing archaeological sites. Some 10% of the study area
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fell within the highlikelihood category, 49% in the moderate category, and 41% in the
lowlikelihood category.

This approach is necessarily totally dependent on the knowledge gained from known
and recorded archaeological sites. Thus, as with

o R R

sl
T

similar predictive-modeling projects, the study is heavily dependent on the vagaries that
brought about the identification of these known sites and not on a systematic and
methodological survey of the sites. The resulting silences in the constructed data set are
not acknowledged, are unquantifiable, and could result in a distorted knowledge database
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upon which the predictive model is dependent. Furthermore, the actual model is entirely
environmentally driven and assumes that the behavior patterns

TABLE 2.1
The West Virginia Predictive Model

High Probability of Moderate Probability  Low Probability of

Sites of Sites Sites
Distance to water 0-230 m 231-500 m >500 m
Slope 0-18° 19-30° >31°
Elevation 400-560 m 561-840 m >840 m
Soils Well drained Moderately well drained Poorly drained
Roads (historic ~ 0-150 m 151-500 m >500 m

only)

associated with the known sites are influenced by, and highly correlated with, slope,
distance to water, elevation, and soil type. Having said that, the environmental data are
invariably based on currently available digital sources and are invariably characteristic of
the late 20th century and not of the time period commensurate with the geography of the
society under study. As with other predictive models, the model does not seek to identify
individual archaeological sites, but to target areas that contained archaeological sites to
varying degrees of likelihood. Without question, the use of GIS greatly facilitated this
process because of the emphasis on the physical characteristics of landscape. However, it
should be noted that seeking to develop the model to incorporate nonquantitative aspects
of landscape would generate considerable difficulty for the GIS analysis. No statistical
test was applied to determine optimal group classification, and reliance was placed upon
the GIA to blend archaeological knowledge of the region with the environmental
parameters. Thus, there were many subjective elements involved in this “quantitative”
methodology, including the selection of environmental factors, the scale of GIS data and
analysis, the locational and attribute accuracy of the recorded archaeological sites and
environmental coverages, and particularly, the subjective selection of category
boundaries. Furthermore, and somewhat typical of similar studies, there is almost no
temporal distinction between the archaeological sites because of the paucity of time data.
As a result, all sites, for all time periods, were analyzed as a single cadre in the same
analysis. Once again, we stress the intent here is not to denigrate the predictive-modeling
process, but to realistically appraise the strengths and weaknesses of that process.

The resulting product was an impressive and persuasive map that displayed areas of
high, moderate, and low site probability. The map was ostensibly based on a logical
Boolean approach, was supported by the technology of GIS, could be replicated, and,
importantly, provided a substantive product that would contribute toward the needs of the
CRM community and meet compliance requirements. Measures of what constituted a
“good” result, of course, remain unspecified, and without a comprehensive
archaeological survey of the entire region (the avoidance of which was one of the
purposes behind this model generation) the accuracy of the model will remain unknown.



Enhancing predictive archaeological modeling 43

2.4 Another West Virginia Predictive Model

In the context of the previous model, now consider the following predictive model. In
similar fashion to the above approach, a new study area was designated that again
emphasized distance to water (buffered from 100, 500, and >500 m), low slopes and
valley bottomlands (<18°), fertile alluvial soils, favored old-field sites, and at a preferred
elevation from just above sea level to 300 m and up to 770 m (Figure 2.2). Without
stretching the point too far, these parameters are not greatly dissimilar to those specified
above for the prehistoric site model. However, these latter parameters correspond not to
the location of archaeological sites, but to the habitat of the common sycamore tree
(Platanus occidentalis L.), a fast-growing, long-lived tree and one of the most common
trees in eastern U.S. deciduous forests (Wells and Schmidtling 2001). The tree especially
favors alluvial soils along streams and bottomlands and is very tolerant of wet soil
conditions and grows well in proximity to water (though it is relatively intolerant to
flooding). We hope you will excuse the ruse employed here, but the question arises as to
what are the models actually predicting—nature or culture? Bearing in mind the minor
differences between the prehistoric and the sycamore models, does this imply that human
behavior can be modeled and predicted by locating the habitat of sycamore trees in the
eastern U.S.? No such correlation is mentioned in the archaeology of the region. But of
course this misses the point, for the prehistoric predictive model does not suggest to
understand human behavior so much as to be able to predict, by whatever means, the
likelihood of sites being located in a particular region. Indeed, based on this finding, that
the distribution of sycamore habitat is highly correlated with the distribution of
prehistoric sites in West Virginia, we may now have the basis of a new, single-variable,
predictive model. The end in predictive modeling justifies the means. If the modeling of
human behavior can be approximated by the distribution of the sycamore, or fertile soils,
or a streambed, then however environmentally deterministic this may be, the model is a
success.

It is clear from these two predictive examples that we consider the treatment of
archaeological sites as simple data points, set solely in an environmentally determined
space, as being problematic. Essentially, the archaeological site is reduced to a uniform,
undifferentiated point in space—the McArchaeo site of predictive modeling—easily
predictable because all points are the same and their location is entirely due to external
variables. In contrast, we suggest that a continuum must exist that ranges from the
extreme reductionism of archaeological sites as uniform points in space, to the full
complexity that comes from consideration of the archaeological
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FIGURE 2.2

Predicting the common sycamore tree.
The resulting model is based on
distance from water, slope, soil type,
and elevation.

site as a cultural entity. Seeking to model human-landscape interaction using uniform
data points concentrates on the world to the exclusion of the subject. At the other end of
the continuum lies Tilley’s phenomenology in extremis—the subject to the exclusion of
the world—which requires a landscape of cultural entities, each differentiated in



Enhancing predictive archaeological modeling 45

endlessly complex variations of subjectivity. The theory, methodology, and practice are
not yet developed to enable the integration of such complexity into GIS and predictive
modeling, but the way forward is to start moving along the continuum away from sole
reliance on simplistic reductionism toward an augmented cultural entity.

2.5 Humanizing the Landscape

We suggest that in determining site locations there is a need to move beyond a sole
reliance on environmental factors (Ebert 2000) and to draw upon aspects of landscape
archaeology that could provide additional determinants of site location. Both “landscape
archaeology” and “postprocessualism” are umbrella terms that encompass a broad range
of understandings, and while it is not possible to go into great detail here, we proffer
some ideas that are pertinent to the aims of predictive modeling. Before doing so,
however, there is an even more fundamental problem that underlies the whole tension
between predictive modeling and landscape archaeology—that of the concept of “site.” It
has long been argued that the “site” as a unit of analysis is theoretically redundant and
that individual and social interaction with the material world is a continuum across the
landscape (Gaffney and Tingle 1984). Early concepts of “off-site archaeology” (Foley
1981) have matured into a general acceptance that an understanding of a site can only be
gained through its contextual connections within its landscape, which comprises a
complex web of spatial, temporal, and cultural links. Part of that understanding is
necessarily concerned with location and why a site is where it is. Of course
environmental factors contribute to this understanding, but they are unlikely to provide a
satisfactory explanation, for the whole edifice of predictive modeling is site-based rather
than landscape-based.

While landscape archaeology is diverse in its interests and applications, it is in essence
concerned with landscape as then as accessed through what it means to be a socialized
human being living within a particular landscape. Exploring such notions of landscape is
not confined to archaeologists, but is a rich vein of thought spanning many subjects
including geography, social theory, philosophy, anthropology, and history, often with an
emphasis on a multidisciplinary approach (Muir 1999; Thomas 2001). We see some of
the challenges facing predictive modeling being encapsulated in postprocessual writings.
As Bender (1993:1) suggests, “Landscapes are created by people—through their
experience and engagement with the world around them. They may be close-grained,
worked upon, lived in places, or they may be distant and half-fantasized.” The differing
forms of engagement with the physical world, and how those relationships can be used to
make sense of an individual and a group’s place in the wider scheme of things, have
given rise to many different types of landscape that, because of their relevance to the
concept of location, are worth exploring briefly here.

Much of this postprocessual research is concerned with landscapes, or more
specifically with places and locales (whether natural features sites or monuments) that are
imbued with cultural meaning through symbolism, often as part of cosmological,
religious, ritual, or ideological beliefs. These traditional cultural properties or sacred
landscapes involve sacred geographies and are founded on many different notions of
what is sacred (Carmichael et al. 1994). There is considerable overlap here with
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humanistic geography (Cosgrove and Daniels 1988) and with anthropology (Hirsch and
O’Hanlon 1995), although these ideas have been widely applied to British prehistory in
particular. Often incorporated into these approaches is a notion of time depth or historical
narrative that is inscribed on a landscape through social memory (Ingold 1993) and
reproduced over long periods of time through structured social practices (Barrett 1994).
Time depth may involve ancestors, perhaps through genealogies, and mythology that
charge certain places with power and significance through association. For nonliterate
peoples, history can be written through landscape features and reproduced through social
action and events that take place at these significant locales (Gosden and Lock 1998;
Edmonds 1999). Aspects of landscape can also represent individual and group power and
identity informally through some of the ideas above or through more structured
mechanisms that convert political and economic hierarchies into forms of spatial control
and access.

It is clear from the body of work briefly summarized above that many different social
and cultural factors can influence site location. Predicting site location based on rational
Western logic is to ignore a considerable amount of anthropological and archaeological
evidence and theory for the convenience of methodological simplicity. There is much
more to location than the interplay of environmental variables, and the modeling
challenge to be confronted is to integrate both environmental and cultural concerns with
the concomitant demands of both data and theory. This approach demands recognition of
the context of individual sites and the importance of spatial and temporal contingency.
Not only what surrounds a site influences its position, but also what came before it and
the cultural development of the landscape. Landscapes are thus a web of spatial and
temporal connections, and the implications of this are only just beginning to be explored
by GlSbased landscape archaeologists. The few existing examples of research in
humanizing landscapes are mainly based on what can be described as landscapes of
perception and have involved attempts to model visibility and accessibility based on an
embodied subject situated within the landscape. Wheatley and Gillings (2000) have
shown the complexity of visibility studies and the shortcomings of a simplistic binary
viewshed, together with ideas for developing the technique. The work of Llobera (1996,
2000) includes an accessibility index that models topographic and cultural influences on
human movement across a landscape. Both visibility and accessibility can have an
influence on site location, although trying to incorporate perception into a model raises its
own philosophical tensions. Through notions of “sensuous geographies” (Rodaway
1994), Witcher (1999) differentiates between perception as the simple reception of
information (i.e., a viewshed of what can be seen) and perception as mental insight (i.e.,
making sense of the view via socially constituted meaning). Despite the limitations of this
work, these are serious attempts to move beyond the confines of PaleoGIS and the
reliance on environmental data alone, and it remains to be seen how these can be
incorporated into predictive modeling.

2.6 Moving from Data Points to Cultural Entities

To illustrate our thinking, we suggest one approach that would support ongoing
predictive-modeling initiatives and build on the contribution of GIS, and yet redress some
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of the imbalance we have alluded to in the context of differing interpretations of
landscape, whether based on sacred, ideological, or cosmological meaning, on
perception, or on symbolisms of power. In this respect, we suggest treating sites not as
uniform data points in space but as cultural entities set against an environmental
backdrop (see Rouse 2000). Such an approach entails applying any knowledge about the
archaeology of the site to the model itself. In Figure 2.3, the data point is interpreted not
solely in terms of its proximity to water and the stream network, but is postulated to have
an additional attractor value. Thus a burial mound becomes more than just another
undifferentiated point intersecting environmental planes, but has a cultural meaning in its
own right. In our West Virginia example we postulate that a burial mound may have
attractor status in that it pulls groups toward it or retains groups in the vicinity through
ancestor worship. Thus one could suggest a greater likelihood of sites being present in the
area because of the nature of the archaeological site itself, the burial mound, having a
sphere of influence over the surrounding landscape and that extended beyond the strict
confines of the “site” itself (Figure 2.3). This influence could easily be modeled within
GIS through the use of distance buffers or, preferably, friction surfaces that incorporated
concepts of relative distance rather than the more limiting use of absolute distance.
Alternatively, the mound might be interpreted as being a repulsor, where fear and taboo
acted to deter access to the site and thereby created a vacant annulus surrounding the site
devoid of prehistoric activity. Again, this is easily modeled in a GIS. A further situation
might be one where the mound acted as a territorial symbol or marker and was thus
placed in a dominant, highly visible location. While these examples are conjecture, in all
three instances the interpretation of the site archaeology itself can both influence and
refine the resulting site-probability map.

Cultural site interpretation can thus be used to augment the environmental point-data-
driven models currently practiced to create an envirocultural probability model. Thus
sites are not treated as homogeneous point data, but, where the archaeology allows, are
treated individually and interpreted for their cultural significance. By augmenting an
environmentally driven analysis of site probability with the addition of a cultural
interpretation of the site entity, we suggest the basis for a midpoint on Bender’s Atlantic
divide. Thus we acknowledge that symbolic, cognitive, perceptual, and other qualitative
reasoning can also influence behavior patterns. In short, we are arguing that the
archaeology be put back into the archaeological predictor models. Furthermore, the
approach outlined above could relatively easily be adapted within a GIS methodology.
This approach does
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FIGURE 2.3

Attempting to incorporate the social
into predictive modeling. The
probability models include (a)
viewsheds from a group of mounds
and (b) attractor buffers.
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entail greater effort because each site must be examined to determine its role in the
landscape. In most predictive models, the number of such known sites has been limited
and should not pose a significant resource problem. Furthermore, it draws upon the skills
of the archaeologist to interpret the data rather than the existing heavy reliance on the
data-processing skills of the GIS analyst.

| -
Figure & Model level 2 meo porating nvownd buflers Legend:
W High Probabelity of Sites
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i il 2 Mfiles ¥ ' Low Probababity of Sites
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2.7 Increasing the Envirocultural Complexity

The model outlined above should be seen as a first step toward some of the ideas outlined
in this chapter. The challenge remains, however, of how to incorporate even greater
complexity into the model. As already argued, this complexity must derive from both
landscape theory and the specifics of

)

FIGURE 2.4

Modeling location based on movement
and visibility: the Ridgeway ancient
trackway in Oxfordshire, England. A
cost-path model (a) and visibility index
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(b) are both used to inform locational
decisions for a series of Iron Age hill
forts along the route.

archaeological evidence from the region in question. We use two further examples here to
illustrate how meaning and explanation based on the contextual detail of the archaeology
of a region must feed into an understanding of site location. Both of these show that
location can be independent of environmental variables in complex and subtle ways that
are both spatially and temporally contingent and therefore could not, in these cases, be
predicted by environmental variables alone.

The first example is based on the work of the Hillforts of the Ridgeway Project that is
based on fieldwork conducted in an area surrounding the ancient Ridgeway track in
Oxfordshire, England (Daly and Lock 2004). Excavation of three Iron Age hill forts
located within 20 km of each other—Uffington Castle, Segsbury Camp, and Alfred’s
Castle—has emphasized marked differences between these sites, despite several surface
similarities. The detailed studies have shown how each site developed from varying
earlier activity, much of which is not evident from the surface. The Ridgeway was a
crucial access route that antedates these sites and, together with the visibility
characteristics of the area’s distinctive topography, has emphasized the nuances of
location (Bell and Lock 2000). In this area, site prediction from environmental variables
would be somewhat meaningless because there is very little variation, and the story is in
the detail of the archaeology that shows location based on the subtleties of vision and
movement as well as historical context (Figure 2.4).

A second example focuses on Mesolithic and Neolithic sites along the River Danube
in the area of the Iron Gates Gorge (Figure 2.5). Central to understanding this site is the
transformation of traditional environmental variables into notions of affordances: how
aspects of the landscape can offer potential for individual and social action to be played
out. Distributions of flora and fauna can be converted into resource-scapes that offer
opportunities for subsistence strategies. The occurrence of archaeological evidence can
feed into notions of task-scapes, for example lithic scatters may represent locales of tool
production that will have a relationship with resource-scapes that require lithic tools. The
interplay between different types of affordances across the landscape creates lifeways for
individuals and groups that challenge our understanding of their practices at a variety of
scales from individual actions to seasonal movements. The location of sites is in a
reflexive relationship with these activities, each influencing the other to produce social
practice that not only reproduces cultural values, but also provides a mechanism for
social change through deviant practices, however slight, being absorbed and continued.

The Iron Gates Gorge example also illustrates the importance of understanding the
meaning of sites through the contextual detail that derives from a combination of theory
and data (in this case, the link between symbolism, visibility, landscape features, and
structural elements of settlements or sites). Excavation at the site of Lepenski Vir, for
example, has revealed graves in alignment with a nearby and very distinctive trapezoidal
mountain, Treskavac. House plans also mimic the mountain shape. Using Higuchi
viewsheds,
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b)

FIGURE 2.5

Modeling location based on symbolism
and context: the Iron Gates Gorge in
Serbia. Note the alignments of
excavated details such as houses and
graves at the site of Lepenski Vir (a)
with pronounced landscape features

(b).
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which incorporate near, medium, and distant banding, has shown that the site is located to
include a variety of alignments on natural features at different distances in the
surrounding landscape. The combination of landscape affordances and understanding
each site as a cultural entity has enabled an understanding of location that goes beyond
environmental determinism.

2.8 Conclusion: The Challenge

The intent of this chapter is to explore issues and approaches to archaeological predictive
modeling. We suggest that many of the substantive issues become most dominant when
we contrast the views of many American CRM-based predictive modelers and those of
many British academic landscape archaeologists. These differences are framed within a
classic modernist—postmodernist tension characterized on one hand by reductionism and
on the other by the complexity of human existence. We acknowledge that these two
positions are largely the result of different historical trajectories within archaeology, but
they also operate within very different contexts today. While acknowledging the political,
economic, and institutional constraints of CRM, we have also raised issues concerning
the role of predictive modeling. At the same time, we suggest one example of how data
points and environmentally driven predictive models may be augmented by the concept
of cultural entity, which brings with it a richer understanding of site and landscape
archaeology. While we are not claiming that landscape archaeology has the answers to
these complex issues, it certainly provides an alternative way of thinking about sites and
their locational characteristics. Drawing upon Bender’s words, “I’m not suggesting that
we have cracked these questions...but...because we have moved into a more reflexive
relationship with the past and to the process of doing archaeology, we are uneasily aware
that they need addressing” (Bender 1999:632).

References

Ashmore, W. and Knapp, A.B., Archaeologies of Landscape: Contemporary Perspectives,
Blackwell, Oxford, 1999.

Barret, J.C., Fragments from Antiquity: An Archaeology of Social Life in Britain, 2900-1200 BC,
Blackwell, Oxford, 1994.

Bell, T. and Lock, G., Topographic and cultural influences on walking the Ridgeway in later
prehistoric times, in Beyond the Map: Archaeology and Spatial Technologies, G.Lock, Ed., I0S
Press, Amsterdam, 2000, pp. 85-100.

Bender, B., Ed., Landscape: Politics and Perspectives, Berg, Oxford, 1993.

Bender, B., Introductory comments, special section on dynamic landscapes and sociopolitical
process, Antiquity, 73, 632—-634, 1999.

Carmichael, D.L., Hubert, J., Reeves, B. and Schanche, A. Eds. Sacred Sites, Sacred Places,
Routledge, One World Archaeology 23, London, 1994,

Cosgrove, D. and Daniels, S. Eds. The Iconography of Landscape, Cambridge University Press,
Cambridge, 1988.

Curry, M.R., Digital Places: Living with Geographic Information Technologies, Routledge,
London, 1998.



GIS and archaeological sitelocation modeling 54

Daly, P. and Lock, G., Time, space and archaeological landscapes: establishing connections in the
First Millennium BC, in Spatially Integrated Social Science: Examples in Best Practice,
Goodchild, ME and Janelle, D.G., Eds., Oxford University Press, Oxford, 2004, pp. 349-365.

Ebert, J.1., The state of the art in “inductive” predictive modeling, in Practical Applications of GIS
for Archaeologists: A Predictive Modeling Toolkit, Wescott, K.L. and Brandon, R.J., Eds.,
Taylor and Francis, London, 2000, pp. 129-134.

Edmonds, M., Ancestral Geographies of the Neolithic: Landscape, Monuments and Memory,
Routledge, London, 1999.

Foley, R., Off-site archaeology: an alternative approach for the short-sited, in Pattern of the Past:
Studies in Honour of David Clarke, Hodder, 1., Isaac, G., and Hammond, N., Eds., Cambridge
University Press, Cambridge, 1981, pp. 157-183.

Gaffney, V. and Tingle, M., The tyranny of the site: method and theory in field survey, Scottish
Archaeological Review, 3, 134-140, 1984.

Gaffney, V. and van Leusen, P.M., GIS, environmental determinism and archaeology, in
Archaeology and Geographic Information Systems: A European Perspective, Lock, G. and
Stanci¢, Z., Eds., Taylor and Francis, London, 1995, pp. 367-382.

Gosden, C. and Lock, G., Prehistoric histories, World Archaeology, 30 (1), 2-12, 1998.

Gozdzik, G., Bergeron, S., and Rouse, J., A Predictive Model Integrating GIS and Archaeology for
the Wyoming-Cloverdale 765-kV Transmission Line Project in McDowell, Mercer, Monroe,
Raleigh, Summers, and Wyoming Counties West Virginia, Horizon Research Consultants,
Morgantown, WV, 1997.

Harris, T.M., Weiner, D., Warner, T.A., and Levin, R., Pursuing social goals through participatory
geographic information systems: redressing South Africa’s historical political ecology, in
Ground Truth: The Social Implications of Geographic Information Systems, Pickles, J., Ed.,
Guildford Press, New York, 1995, pp. 196-222.

Hasenstaab, R.J. and Resnick, B., GIS in historical predictive modelling: the Fort Drum project, in
Interpreting Space: GIS and Archaeology, Allen, K.M.S., Green, S.W., and Zubrow, E.B.W.,
Eds., Taylor and Francis, New York, 1990.

Hirsch, E. and O’Hanlon, M., Eds., The Anthropology of Landscape, Oxford University Press,
Oxford, 1995.

Ingold, T., The temporality of landscape, World Archaeology, 25:152—-74, 1993.

Judge, W.J. and Sebastian, L., Eds., Quantifying the Present and Predicting the Past: Theory,
Method, and Application of Archaeological Predictive Modeling, U.S. Department of the
Interior, Bureau of Land Management, Denver, 1988.

Kohler, T.A. and Parker, S.C., Predictive models for archaeological resource location, in Advances
in Archaeological Method and Theory, Vol. 9, Schiffer, M.B., Ed., Academic Press, New York,
1986, pp. 397-452.

Kuiper, J.A. and Wescott, K.L., A GIS Approach for Predicting Prehistoric Site Locations,
presented at 19th Annual ESRI User Conference, San Diego, CA, July 26-30, 1999; available
on-line at http://www01.giscafe.com/technical_papers%20/Papers/paper057/, accessed 12
October 2002.

Kvamme, K.L., The fundamental principles and practice of predictive modelling, in Mathematics
and Information Science in Archaeology: A Flexible Framework, Voorrips, A., Ed., Vol. 3 in
Studies in Modern Archaeology, Holos-Verlag, Bonn, 1990, pp. 257-295.

Llobera, M., Exploring the topography of mind: GIS, social space and archaeology, Antiquity, 70,
612-622, 1996.

Llobera, M., Understanding movement: a pilot model towards the sociology of movement, in
Beyond the Map: Archaeology and Spatial Technologies, Lock, G., Ed., 10S Press, Amsterdam,
2000, pp. 65-84.

Lock, G., Theorising the practice or practicing the theory: archaeology and GIS, Archaeologia
Polona, 39, 153-164, 2001.



Enhancing predictive archaeological modeling 55

Lock, G. and Harris, T., Introduction: return to Ravello, in Beyond the Map: Archaeology and
Spatial Technologies, Lock, G., Ed., 10S Press, Amsterdam, 2000, pp. Xiii-xxv.

Mark, D.M., On the Ethics of Representation: or Whose World Is It Anyway? presented at
Geographic Information and Society: A Workshop, National Center for Geographic Information
and Analysis, Friday Harbor, WA, 11-14 November 1993.

Muir, R., Approaches to Landscape, Macmillan Press, London, 1999.

Rodaway, P., Sensuous Geographies: Body, Sense and Place, Routledge, London, 1994.

Rouse, L.J., Data Points or Cultural Entities: A GIS-Based Archaeological Predictive Model in a
Post-Positivist Framework, unpublished M.A. thesis, Department of Geology and Geography,
West Virginia University, 2000.

Taylor, P.J. and Overton, M., Further thoughts on geography and GIS, Environment and Planning
A, 23, 1087-1094, 1991.

Thomas, J., Archaeologies of place and landscape, in Archaeological Theory Today, Hodder, .,
Ed., Polity Press, Oxford, 2001, pp. 165-186.

Tilley, C., A Phenomenology of Landscape: Places, Paths and Monuments, Berg, Oxford, 1994.

Trifkovic, V., The Construction of Space in Early Holocene Iron Gates. Oxford: Unpublished D.
Philosophy thesis, 2005, University of Oxford.

Wells, 0.0. and Schmidtling, R.C., Platanus occidentalis L. Sycamore, 2001; available online at
http://forestry.about.com/science.forestry/libarary/silvics/blsilsye.htm, accessed 12 October
2002.

Wescott, K.L. and Brandon, R.J., Eds., Practical Applications of GIS for Archaeologists: A
Predictive Modeling Toolkit, Taylor and Francis, Philadelphia, 2000.

Wescott, K.L. and Kuiper, J.A., Using a GIS to model prehistoric site distributions in the Upper
Chesapeake Bay, in Practical Applications of GIS for Archaeologists: A Predictive Modeling
Toolkit, Wescott, K.L. and Brandon, R.J., Eds., Taylor and Francis, Philadelphia, 2000, pp. 59—
72.

Wheatley, D.W., Going over old ground: GIS, archaeological theory and the act of perception, in
Computing the Past: Computer Applications and Quantitative Methods in Archaeology, CAA
92 proceedings, Andresen, J., Madsen, T., and Scollar, I., Eds., Aarhus University Press,
Aarhus, Denmark, 1993, pp. 133-138.

Wheatley, D.W., Spatial technology and archaeological theory revisited, in Computer Applications
and Quantitative Methods in Archaeology, CAA 96 proceedings, Lockyear, K., Sly, T.J.T., and
Mihilescu-Birliba, V., Eds., BAR International Series, 845, Archaeopress, Oxford, U.K., 2000,
pp. 123-131.

Wheatley, D. and Gillings, M, Vision, perception and GIS: developing enriched approaches to the
study of archaeological visibility, in Beyond the Map: Archaeology and Spatial Technologies,
Lock, G., Ed., 10S Press, Amsterdam, 2000, pp. 1-27.

Wise, A.L., Building theory into GIS-based landscape analysis, in Computer Applications and
Quantitative Methods in Archaeology, CAA 96 proceedings, Lockyear, K., Sly, T.J.T., and
Mihilescu-Birliba, V., Eds., BAR International Series, 845, Archaeopress, Oxford, U.K., 2000,
pp. 141-148.

Witcher, R.E., GIS and landscapes of perception, in Geographical Information Systems and
Landscape Archaeology, Gillings, M., Mattingly, D., and van Dalen, J., Eds., Vol. 3, The
Archaeology of Mediterranean Landscapes, Oxbow Books, Oxford, U.K., 1999, pp. 13-22.



3
One Step Beyond: Adaptive Sampling and
Analysis Techniques to Increase the Value of
Predictive Models*

Konnie L.Wescott

ABSTRACT A critical part of the planning process in developing an
archaeological predictive model is defining the strategy for testing and
refining model results. Ideally, predictive modeling is a dynamic process
that provides more than just a static map that is outdated as soon as new
data become available. The issue of uncertainty in the accuracy of
available information affects confidence in the results of any predictive
model. Under certain conditions, the resulting model may be too
conservative to be useful for even basic planning applications. An
assessment of data uncertainty and a method for developing a data-
acquisition and -testing strategy to reduce that uncertainty can produce a
more reliable and cost-effective model. Use of an iterative modeling and
testing regime that is based on an adaptive sampling approach is a
possible solution. Bayesian techniques and adaptive sampling methods
have been used successfully to support the characterization and
remediation of hazardous-waste sites, and these have resulted in
significant

* Work supported by U.S. Department of Energy under contract W-31-109-Eng-
38.

cost savings in the cleanup of those sites. A similar approach may
prove beneficial for determining the likelihood that archaeological sites
are present in a given area. The ability to optimize sampling efforts to
reduce the uncertainty will provide managers and planners with a higher
degree of confidence in the model’s accuracy, especially as new data are
received and additional iterations of the model are run.
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Preface

The conference held at Argonne National Laboratory (Argonne) was a unique
opportunity to share some ideas about geographical information systems (GIS) and
predictive modeling in a relaxed and collegial, but extremely focused, setting. For me, it
was an opportunity to express some thoughts | had about assessing the varying levels of
confidence in predictive model results and tie those ideas to some innovative work that
was ongoing at Argonne using adaptive sampling methods to characterize
hazardouswaste sites. | was not exactly sure how the two ideas could be compatible, but
the underlying concepts seemed worth investigating and sharing, if for no other reason
than to obtain feedback from the many experts attending the conference. In writing this
chapter, | continued my struggle to link the concepts proven effective in the context of
hazardous-waste characterization and remediation with the practice of archaeological
predictive modeling, particularly in a cultural resources-management context. Although |
have not had the resources available to me to test the concepts in the field, | believe they
are worth adding to the discussion on archaeological modeling brought forth in these
proceedings.

3.1 Introduction: Current Use and Value of Predictive Models

The value of using GIS-based predictive models for efficient land management and
planning and cultural resources protection and stewardship is apparent in many contexts.
Two specific examples follow based on U.S. regulatory requirements. The first example
looks at some specific goals that a federal manager may have while embarking on an
environmental assessment process for a proposed construction project. The second
example follows the inventory and evaluation requirements of the National Historic
Preservation Act (NHPA), which are better suited to long-term facility management
approaches, rather than project management and administrative goals for a specific
proposed project.

An environmental management goal of a federal project manager operating within the
National Environmental Policy Act might be to minimize or prevent impacts to
significant natural and cultural resources while achieving more specific project goals
(e.g., construction of a scientific facility). An administrative goal of the same manager
might be to keep project costs to a minimum. A specific cultural resources goal in this
particular situation might then be to protect archaeological sites, so that they remain
intact for future generations, while still meeting facility management and administrative
goals. This cultural resources goal can be met by limiting (not necessarily eliminating) an
intrusive survey and its associated costs (e.g., if a previously surveyed location meets
project needs) and avoiding known and unknown/ unrecorded archaeological sites to the
extent feasible. The knowledge base to achieve this goal is typically derived from
compliance-based survey projects with accelerated timelines and limited financial
resources. Modeling is one logical approach for streamlining the planning and
management process with regard to the presence or absence of archaeological sites and
maximizing the value of the available data. This, in turn, provides a structure for
maximizing the value of data collected in the future.
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In addition to project-specific requirements for cultural resource compliance, as
illustrated in the previous example, U.S. federal managers are also tasked under the
NHPA to inventory and evaluate all cultural resources under federal jurisdiction. This
task is acknowledged to be nearly impossible using traditional inventory methods, given
the vast amount of federal acreage and the manpower and time required to survey that
land and record and evaluate sites. Costs simply become too exorbitant to accomplish the
task. However, with a modeling structure to help guide future inventory events, the task
of expanding the knowledge base of the federal land unit can become less daunting.

The purpose of this chapter is not to discuss the nuts and bolts of predictive modeling,
as modeling remains a popular topic in the literature and likely will continue to be a
source of debate and practice. Rather, this chapter is reflective, intended to offer a
possible approach for land managers to apply in order to prioritize their cultural resources
management (CRM) activities, to be effective stewards of cultural resources under their
jurisdiction, and to maximize their limited financial resources by enhancing both the data
value of their surveys and the value of their predictive models that are either already in
existence or are in various stages of development.

There are property types (federal facilities or land-management units) for which GIS-
based predictive models may not be necessary: small facilities, facilities with extensive
survey data already accumulated, and facilities with seasoned archaeological managers
who know more about the area than can be communicated electronically (however, keep
in mind that institutional knowledge has been known to leave). In these instances,
priorities for additional sampling and data collection likely can be made easily and
intuitively without a computer-generated model. However, for large land holdings, even
skilled archaeologists may find GIS-based models useful and costeffective for not just
managing cultural resources under their jurisdiction, but for communicating their needs
and management/compliance goals to nonarchaeologists. On the other hand, there are
many instances in which the managers responsible for meeting stewardship and
compliance requirements regarding cultural resources may not have a background or an
education in archaeology. In the latter context, predictive models and a decisionsupport
approach for maximizing the value of model output can be of great benefit, as long as
qualified archaeological guidance is being provided.

3.2 Testing and Improving Predictive Models

One tangible product of a predictive model is a static map that illustrates the potential
(typically some variation of high, medium, and low) of encountering sensitive cultural
resources within a given area. These maps can be very useful for facility planning and
management, as well as for assessment activities within a given planning horizon.
However, these maps provide a “snapshot” that is based only on data available at a
particular point in time. The predictive maps can become outdated very quickly,
especially if the facility engages in an active survey or data-collection program. The
models could require frequent updating or revision to incorporate new archaeological
information, as well as results from other environmental updates to the facility GIS (e.g.,
updates from soil samples, geologic characterizations, data from new construction
projects, etc.).
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In current practice, archaeological predictive models are tested and improved through
the use of traditional sampling methods (e.g., pedestrian surveys, shovel tests). A CRM
manager is typically not able to dictate where surveys will be completed or how the data
will be used beyond the immediate need, as survey activities are often project-driven for
only compliance purposes. Recognizing that there may be administrative barriers,
attempts should be made to actively use the newly acquired survey data to validate and
test previous model results. In situations where staffing and financial resources are
available, or can be made available, to more proactively manage and protect cultural
resources, and thereby direct inventory efforts, alternative approaches may be employed
for selectively sampling those areas with the greatest potential for refining an existing
predictive model.

Other issues also may affect the need for model revision. Significant data gaps may
have been present during model development, or it may be known or discovered that
some of the data collected were suspect or biased in some fashion. Alternatively, the data
used in the original model may have represented current environmental conditions rather
than the paleoenvironmental conditions present when the site locations were first utilized,
resulting in the possible need for a different model. New models could also be developed,
if needed, to accommodate technological advances and new ways of looking at
archaeological or environmental data.

Modeling is imprecise by nature, and the results are fraught with varying levels of
uncertainty. Understanding the uncertainty and how it affects dayto-day operations is a
key component to using a model successfully. Once a model is no longer fulfilling its
intended purpose (i.e., it loses its predictive power and levels of uncertainty become too
great for the model to be useful), it becomes necessary to be able to adapt to the changing
conditions brought forth by new data and possibly employ new approaches. As stated
above, selectively sampling those areas with the greatest potential for refining an existing
predictive model (or for proving it is inadequate) is one way to reduce the uncertainty in
the model. The remainder of this chapter will focus on this point.

Ideally, the modeling process should be dynamic and could even be automatic as new
data become available. Each archaeological survey, each soil sample, or each monitoring
event should trigger an update or refinement to the model. An adaptive system like this
would assist the facility manager or the cultural resource manager in applying the most
current information to projects by providing an opportunity for reinterpreting the model
results, determining and quantifying uncertainty in the results, and evaluating the latest
survey and testing strategies. However, to automate this process, a larger integrated data-
management and decision-support system would be needed. The dynamic archaeological
model could then be interfaced with data updates as sampling progressed. Ultimately, the
decision-support system could assist the user in increasing the value of the predictive
model by determining the optimal locations to survey on a priority basis, thereby
reducing data uncertainty and increasing confidence in the model results.

3.3 Quantifying Uncertainty and Bayesian Statistics

Assuming a model has been developed for a particular facility that accommodates the
available data, a three-dimensional cost surface can be produced to indicate levels of
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confidence (or certainty) in the predictions. For example, areas previously surveyed and
known to contain sites are indicated as areas of high probability and high confidence (low
uncertainty). Areas previously surveyed and known not to contain sites are indicated as
low probability and high confidence. Areas not surveyed are modeled as high or low
probability and low confidence (high uncertainty). Varying degrees of confidence are
possible, depending on the methods employed. The confidence in surveyed areas with no
sites may vary based on the possibility of buried remains not discovered during the initial
survey. Confidence in unsurveyed areas may vary on the basis of other factors, such as
suitability of the location based on environmental factors, expert knowledge of site
distributions in the area, autocorrelation or proximity to high- (or low-) confidence areas,
and physical clues from maps or remote sensing. Such “soft” types of data can be
accommodated in a statistical framework following a Bayesian approach.

The Bayesian statistical approach is a potentially promising method for addressing
uncertainty in a modeling context. As part of a dynamic modeling process, it allows
combining data with existing knowledge and expertise (prior beliefs). It is the one
statistical method that allows you to explicitly state what elements of the model are
subjective, and it allows you to change your beliefs on the basis of new evidence. There
are obviously pros and cons to this type of approach, and arguments can and will be made
on either side of the debate. For example, expert knowledge will vary by expert, and who
you choose to believe will affect the outcome. However, by making these subjective
choices explicit in the model, there could be an advantage over classical statistics in how
the output is interpreted by others (i.e., it may be less likely to be misinterpreted). To
date, the most accepted use of Bayesian statistics in archaeology is in calibrating and
interpreting scientific dating determinations; however, it appears to be getting some
attention in other areas of archaeology, such as for predictive modeling (Millard 2003;
Orton 2003; Van Leusen 2002). Further discussion of using Bayesian statistics for
developing archaeological predictive models can also be found in Chapter 9 (Verhagen,
this volume).

Given the model and the ability to apply expert knowledge through Bayesian statistics
to quantify levels of uncertainty, such as for producing a cost surface as described above,
the next step is to develop decision rules that will guide a priority-based sampling
strategy for collecting data to maximize the value of the model’s output (reduce the level
of uncertainty).

Scientists working on the characterization and remediation of hazardouswaste sites
have developed one possible approach using adaptive sampling methods and Bayesian
statistics that may be of value in archaeological contexts (depending on the
appropriateness and applicability of geostatistical models to specific project goals). More
discussion on this possible application follows.

3.4 Adaptive Sampling and Analysis Programs

Although hazardous-waste characterization and archaeological research may vary greatly
in their ultimate goals, the two activities share a need for obtaining accurate field data as
efficiently as possible. Within the field of hazardous-waste characterization and
remediation, a possible alternative approach to traditional field sampling has been
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developed for the U.S. Department of Energy (DOE 2001). The Adaptive Sampling and
Analysis Programs (ASAPs) were developed to solve a particular problem related to the
expense (in money and time) of site characterization. The traditional process was to
prepare a detailed work plan for a sampling program, deploy technicians to collect a
prespecified number of samples from specific, gridded locations, and send the samples
off-site for analysis. On the basis of the offsite results, it would be determined if another
work plan needed to be developed and field technicians redeployed to start the same
process over again to resolve inevitable uncertainties in the data. To avoid some of the
risk of needing to repeat the process, there has been a tendency to oversample an area to
make sure it is adequately covered. However, this approach is still costly and does not
always eliminate the need to resample if data anomalies are present. ASAPs have proven
to be a good solution to this problem. They rely on a dynamic work plan that incorporates
the new sample data with available GIS data and modeling techniques that allow the
sampling team to evaluate the data in the field and provide a basis for fieldlevel decision
support for an “on the fly” sampling program. (Since the time of my conference
presentation, the Environmental Protection Agency has introduced the “triad” approach,
which applies similar concepts for streamlining data collection and addressing decision
uncertainty; see Crumbling et al. 2001 and http://www.epa.gov/tio/triad.)

The ASAPs approach uses a GIS-based system with components for data integration
and decision support. The data-integration software (e.g., ArcView® GIS) is used to
integrate, manage, and display real-time data for site characterization as the data are
collected. A decision-support software tool, named Plume™, was developed at Argonne
specifically for characterizing hazardous-waste sites by reducing uncertainty in the
sampling collection process. Plume collectively accounts for “soft” site data (historical
data, maps and photographs, past experience, model results) and “hard” in-field sample
results to determine where the next samples should be taken. Plume incorporates analyst-
developed prior probabilities of threshold concentration levels of the contaminant
(generally on the basis of “soft” data) and advanced Bayesian and indicator geostatistical
techniques to provide an image of the known contamination based on the samples taken,
quantitative measures of the inherent uncertainty and the benefits of additional sampling,
and the new sampling locations that will provide the most value in reducing uncertainty.

The advantages of the ASAPs over more traditional site-characterization methods are
that fewer samples and sampling events are needed, which reduces overall project cost
and the potential for worker exposure to contaminants. ASAPs result in better
characterization because of the ability to rapidly visualize data as it is generated along
with the ability to evaluate the value of additional data collection in the field (DOE
2001).

3.5 ASAPS Approach to Archaeological Predictive Modeling

Despite some obvious differences between hazardous-waste sites and archaeological
sites, the concept of using Bayesian statistics and an adaptive sampling program is
interesting and holds promise for application in archae-ology. The following is an
example of how an approach similar to ASAPs might work in an archaeological context
for testing an existing predictive model.
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Using a Bayesian approach, a new, more adaptive model can be developed that takes
into account “soft” and “hard” data. Site presence is given an indicator value of 1, and
site absence is given an indicator value of 0. These values are only achieved if the area
has been adequately surveyed and either a site was recorded or no site was found. All
unsurveyed areas would be given an initial indicator value of 0.5, as there would be equal
opportunity for site presence or absence without the benefit of applying any additional
information. However, because additional information is available for some locations, it
can be used to change the 0.5 values toward either 1 or 0. The existing predictive model
can be applied, although the values may only change slightly in the absence of rigorous
model testing. For example, an area designated as having a high potential for containing a
site might be assigned a value of 0.6 or 0.7 just based on the initial model. However, for
that same area, on the basis of expert opinion or possibly an anecdotal recollection of
artifacts being present in that vicinity, the assigned value of that area could be increased
to 0.8 or 0.9, meaning there is much higher confidence that a site exists in that location.
In locations where it is possible that deeply buried sites may be present but were not
discovered during initial survey, the level of confidence in the result of site absence may
not be as high, and the initial value of that area for site absence might change from 0 to
possibly 0.15 because of the potential for deeply buried remains. As this cost-surface
model is produced across the entire area, the goal of future surveys (whether they be
directed or simply compliance-based) is to change as many of the intermediate values as
possible (i.e., values within the range of 0.4 to 0.6) to values closer to 0 or 1. Areas for
which there are higher levels of confidence (e.g., >0.8 for site presence and <0.2 for site
absence) would not be prime candidates for directed sampling for planning purposes.
However, these areas would be surveyed if selected for future ground-disturbing
activities and the results of the survey fed back into the system.

As new data become available, the indicator values are allowed to change in response
to that new data to improve the model results. As more Is and Os are entered and
confidence builds in other areas, the initial model should be reevaluated, adjusted, and
reapplied to change some of the underlying intermediate values, as appropriate. Future
sampling efforts may provide sufficient validation of the initial model that increases
confidence in the model output and allows additional adjustments in favor of the model
output (e.g., areas previously designated 0.6 on the basis of the high-potential
designations of the model could become 0.7 because there is increased confidence in the
model results). Alternatively, the initial model may be determined ineffective, and
indicator values based on that model may need to return to a value of 0.5.

As far as optimizing locations to sample next, the hazardous-waste site example uses
Bayesian and geostatistical procedures to develop the decision rules about where to
sample (e.g., rules to determine if the area is clean or contaminated). Kvamme (Chapter
1, this volume) makes reference to the potential for geostatistics and autocorrelation in
archaeological predictive modeling, but the particulars on when and how to apply these
approaches were not discussed. Particulars of the sampling program are likely to be
model- and location-specific; therefore, there is little more for me to add to this
discussion. Although | had hoped to actually demonstrate the utility of this approach with
real data and a sampling program (possibly something similar to Plume) designed
specifically for archaeology, support for these specific efforts has not yet been secured.
However, | believe the conclusions, although reflective rather than substantive, are still
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relevant for the discussions on predictive modeling presented in this book. Ultimately, the
goal of the sampling program is to reach an acceptable level of confidence to achieve a
“statistical maximum” (Van Leusen 2002) for predicting and observing the same thing
(either a site or no site) and to minimize occurrences of predicting and observing different
things (predicting no site, but observing a site, and predicting a site, but observing no
site). As stated by Van Leusen (2002), efforts for archaeological resource management
seem to focus on instances where site absence is predicted but sites are actually present,
rather than on the full set of model outcomes. This is mostly the case because it has costly
consequences. However, to increase the accuracy and efficiency of decisions based on a
particular model, one must have confidence that the entire system is operating correctly.

3.6 Conclusions

A clear statement of the specific context in which a model is developed and of the
intended goals of a model is extremely important for evaluating model effectiveness. In a
facility-planning and cultural resources management context, the goals might be to limit
intrusive surveys and avoid sites to the extent feasible. The most efficient modeling for
these purposes is a dynamic process that incorporates a sampling strategy to continually
refine model results. Uncertainties in the accuracy of the data could be addressed within
the sampling strategy. Bayesian statistics and an adaptive sampling approach have the
potential to provide a minimally intrusive and cost-effective strategy for improving
model results.

The general concept that expert knowledge can be used to generate decision rules to
negotiate an adaptive sampling program is something that should be analyzed further. An
adaptive sampling strategy and a decisionsupport system could streamline CRM activities
to help land managers avoid planning development projects in areas of high potential
with a high degree of confidence in the predictions, thereby avoiding many of the
associated costs that accompany those areas in terms of required surveys and the possible
excavations of sites. The most helpful information would be in continually reevaluating
the level of confidence in the results of an existing predictive model that has been
updated to reflect new information. The manager then could apply the logic that high
confidence in high probability means potential high cost. Conversely, high confidence in
a low-probability area means the likelihood that costs would not exceed those for a
traditional survey, with the expectation that no significant sites would be encountered.
Increases in uncertainty regarding site presence on either end of the scale would result in
increases in uncertainty regarding the total cost of the project.

Using adaptive sampling and a dynamic modeling process increases management
efficiency in planning and decision support by incorporating the most up-to-date
information and the most accurate-to-date model results while reducing the amount of
uncertainty and increasing the confidence level in the predictions.
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Modeling for Management in a Compliance
World

Christopher D.Dore and LuAnn Wandsnider

ABSTRACT In practice, compliance-driven cultural resource
“management” and its requirements for resource location, evaluation,
impact assessment, and mitigation manifests a fundamentally different use
of geospatial predictive modeling than do research-oriented investigations.
This difference primarily results from the lack of an iterative research
design. In research-oriented modeling, iterations of model building and
model testing gradually build a more robust model and lead to an
increased understanding of the variables that condition human spatial
behavior in the past. In a compliance environment, spatial models are
rarely built and evaluated; rather, once built, they are applied in a single
iteration. An assumption is made that the model being used will
accurately predict behavior in space. Yet, in most settings, our knowledge
of the factors that condition the spatial organization of activities—and
under what conditions these factors are relevant—is just beginning to
develop. Coupled with the methodological issues of sample size, changing
environmental conditions, functional differences in resource types, the
fact that most archaeological deposits represent depositional (as opposed
to functional) sets that have accumulated over hundreds of years, spatial
variability caused by nonenvironmental factors, etc., compliance modeling
certainly does not represent best practice, even though it is legal under
federal cultural resource law.

Rather than modeling the past, a more productive approach to
modeling for cultural resource managers is to model the present. Instead
of reacting to development and infrastructure projects that have taken the
place of our stewardship responsibility, geospatial technologies can be
used to design a proactive approach to resource management. With such
an approach, present conditions, both natural and cultural, are modeled to
predict site and feature visibility and to identify potential threats to surface
sites and features. At a regional scale, the use of vegetation, slope, and
sediment data can be used to develop erosion models for current and
future conditions. Cultural resources can be compared with these models
to categorize and prioritize the resources most at risk. At the scale of
individual resources, aerial photography and new higher resolution
satellite imagery can be used to establish the baseline condition of
resources and, with follow-up visits, to establish and compare rates of
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change from erosion, all-terrain vehicles, and vandalism. At the intrasite
scale, new processing techniques can be used with geophysical data to
predict the nature of actual cultural features rather than identify data
anomalies that then require excavation. These techniques will ultimately
lead to absolute, rather than relative, signatures for properties of the
archaeological record and provide a truly nondestructive archaeology. We
illustrate this geospatial management framework with archaeological
examples from western, southwestern, and midwestern North America.

4.1 Introduction

Although “cultural resource management” (CRM) is the term used to describe applied
archaeology® within the United States, in fact, however, there is very little management
of archaeological resources, at least in a stewardship context. Landholding federal
agencies, while tasked with this responsibility under Section 110 of the National Historic
Preservation Act (NHPA), Executive Order 11593, and others, are largely unable to meet
this responsibility due to vast landholdings (especially in the western United States),
numerous resources, small budgets, and the pragmatic priority of fulfilling compliance
obligations such as those required by Section 106 of the NHPA. The Advisory Council
on Historic Preservation (2001) recently stated, “In spite of the important stewardship
responsibility entrusted to Federal agencies for much of our Nation’s heritage, other
agency mission priorities often force historic preservation activities, programs, funding,
and staffing to take a back seat.”

Compliance with Section 106 requires that federal agencies take into account the
effects of undertakings on historic properties and that the Advisory Council on Historic
Preservation (Advisory Council) be given the opportunity to comment. In practice, four
steps are usually taken to fulfill compliance responsibilities with Section 106 and other
environmental laws, and thereby “manage” cultural resources: identification of resources,
evaluation of resources, assessment of the effects of a project on significant resources,
and an identification of ways to lessen effects that are deemed adverse.

Predictive modeling, done both within and outside of geographic information systems
(GIS), has long been a part of federal cultural resources compliance (e.g., Ambler 1984).
When modeling is implemented in the compliance process, it is almost exclusively used
in the resource-identification phase. Driven by the high cost of systematic field surface
surveys, federal agencies and nonagency project proponents have searched for ways to
reduce the costs of resource identification. Sample surveys have been the cost-saving
strategy of choice, and predictive modeling, sometimes less formally called sensitivity
analysis, is the method most often utilized to spatially define sampling strata.

From a legal perspective, there is ho mandate to comprehensively survey a project
area, called the area of potential effects (APE). Likewise, when undertaking a compliance
investigation, there exists no requirement necessitating that all resources be found within
the APE. The legal burden is that a reasonable and good-faith effort be made to identify
resources within the project area (36 CFR 800.4(b)(1)). Using predictive modeling to
identify areas most likely to contain resources is not only allowable (U.S. Secretary of
Interior 1983), it has been informally advocated by the Advisory Council (McCulloch
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1999). As we will outline below, while legal for compliance purposes, we believe that the
use of predictive modeling within a compliance framework is not best practice and
actually perpetuates stagnation in our understanding of past human land use.

Most predictive modeling to identify resources is not best practice for a variety of
reasons discussed below. Insofar as this is true, that aspect of “cultural resource
management” encompassed by “identification” is similarly challenged. But, with the
emergent perspective of landscape management coupled with widely available geospatial
technologies (emphasized here), management in general and, especially, two other
common compliance activities—assessment of project effects and ways to lessen adverse
effects—become approachable. In what follows, we identify some of the problems with
modern modeling applications in compliance-driven cultural resource management,
concluding with examples of the application of geospatial modeling to stewardship-
oriented management of cultural resources at a variety of scales. Through these efforts,
we aim to put the “M" back in CRM.

4.2 Predictive Modeling and Compliance

Critiques and discussions of the methods involved in predictive modeling and sampling
have permeated our professional literature over the last 30 years. Many of the issues we
identify here have been outlined by others, including Kohler and Parker (1986), Kvamme
(1989, 1990), contributors to Judge and Sebastian (1988), Church et al. (2000), and Ebert
(2000). While, collectively, we are well-informed about the theoretical and
methodological issues in modeling, this knowledge rarely seems to be considered in the
design and application of models in the compliance community. With geographic
information system software on the desktop of most agency cultural resource managers
and cultural resource consultants, and with pressure to lessen the cost of compliance, the
lure of technology has made predictive modeling vogue in the compliance world.
Unfortunately, many of these modeling efforts have been flawed by methodological and
application mistakes. Given these oversights, we feel that it is beneficial to briefly restate
these issues with an emphasis on compliance applications, focusing especially on model
building, model testing, and the theoretical issues that underlie each of these tasks.

4.2.1 Model Building

Archaeologists (Altschul 1988; Ebert and Kohler 1988) often distinguish between
inductively and deductively derived models. No matter the mode of model building,
decisions about data inclusion and data quality affect model performance. The
appropriateness of the environmental base data used to build a model is rarely scrutinized
sufficiently. Research projects may factor in data adequacy as a prerequisite to selection
of a study area or incorporate building environmental data sets into the research program,
but compliance investigations rarely have this luxury. The project area for a compliance
project has been selected a priori by the nature of the undertaking, and investigators have
little choice in the availability of environmental base data. Custom-designed data sets are
virtually never created due to limitations in project schedules and budgets. Base data for
model building in a compliance investigation almost always means using “off the shelf”
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data, usually from the United States Geological Survey (USGS), one of the private firms
in the new value-added spatial data industry, or clients. Insufficient time is spent
evaluating the metadata and asking if these data are appropriate at all for the scale of
human landscape utilization of interest. Quite apart from issues of data scale, resolution,
and algorithms used to create data sets (e.g., Hageman and Bennett 2000; Kvamme
1990), the actual accuracy, error, and precision of these data as expressed in the National
Map Accuracy Standards is in fact too low to support high-resolution modeling efforts
attempted in compliance exercises (Marozas and Zack 1990).

Another problem arises from the oversimplification of the natural environment as
related to human land use (Church et al. 2000; Wescott and Kuiper 2000). For example,
the distance to nearest water is frequently used as source data for models, but rarely do
model builders consider the type of water. Is the modeled water snow, a stream, lake,
spring, or ocean? If a body of water, is it brackish or fresh? If a stream, is it annual or
perennial? Is it habitat for anadromous fish or other resources? These types of
distinctions have very different ramifications for how people use the natural landscape.

Similar problems exist with the archaeological data used to establish the correlations.
These data sets usually come from the records of the landholding federal agency. The
geospatial controls for the spatial component of these data come from a wide range of
sources, and accuracy metadata often do not even exist. In determining the accuracy of
the Nebraska statewide archaeological database, for instance, we found that the
archaeological resource database data error ranged dramatically over an order of
magnitude in the hundreds of meters (Wandsnider and Dore 1995). To ensure at a 90%
confidence interval that a site was actually located where records claimed it was, sites
recorded with universal transverse Mercator (UTM) coordinates had to be buffered by
353 m, and sites recorded by legal description needed a 1000-m buffer for the same
accuracy confidence—and this was after discarding sites with larger errors clearly
originating from coding and data entry.

Additional problems, besides those of spatial accuracy, also exist with the
archaeological component of modeling data. Many times, the number of available sites
used to build an inductive model is insufficient to draw statistically meaningful
correlations between resources and landscape features. This is particularly problematic in
compliance investigations where project areas can be quite small and good spatial data
sets in adjacent areas are lacking. Likewise, the functional class of archaeological sites is
too often ignored. That is, sites are treated as unifunctional; the investigator fails to
consider that habitation sites, processing sites, quarry sites, etc. are located on the
landscape using different, and sometimes contradictory, criteria (but see Hasenstab and
Resnick 1990; Savage 1990; Wescott and Kuiper 2000). Further, temporal distinctions
are often slighted, especially beyond the simple historic/prehistoric division (but see
Altschul 1990). These oversights exist even though, after doing archaeology for over 100
years, we have learned that human land use did change with time in response to social,
economic, and environmental dynamics. Unfortunately, when a savvy model builder does
in fact discriminate along temporal and functional dimensions, the sample size within
each class can be reduced to meaningless levels, making a bad situation worse.

Finally, most archaeological sites that are known, and that exist in spatial databases for
use by model builders, are sites discovered through surface survey. While this is less
problematic in some portions of the desert west where 10,000 years of human land use is
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visible on the surface, in most places only a fraction of the resources have surface
signatures. Thus, in most cases, we can only state where sites can be found, not where
sites are not found, and models built upon these data best predict the visibility of a
resource on the ground surface as opposed to the actual presence of a resource, whether
surface or subsurface. (See discussion in Warren and Asch [2000:27-28] and Cashmere
and Wandsnider [1995] for explicit attempts to model surface visibility.)

Combining environmental and archaeological data sets presents problems of its own.
Do the two data sets even belong together? How representative is the environmental data
of the landscape that existed when locations and landscapes were utilized (Church et al.
2000)? As previously mentioned, most data from compliance projects is off-the-shelf
data, and almost all of these data are from the post-Landsat era (post-1972). These data
may or may not be appropriate for modeling depending upon the degree of environmental
change that has taken place. From a compliance perspective, attempting to draw
correlations between the modern environment and the locations of archaeological sites is
desirable. As archaeologists and scientists, however, what we really want to understand is
how people interacted with past environments. Further, the correlations that may be
established between the present environment and archaeological resources may be “false”
correlations that may really be showing areas where past and present landscapes
correspond (Duncan and Beckman 2000:55). A second concern when combining
environmental and archaeological data sets arises from stacking, or the vertical layering,
of data sets. As Marozas and Zack (1990) have pointed out, the overall horizontal error is
additive: the error of each layer is added together to produce composite error. Given the
accuracy of individual data layers and their degree of heterogeneity, the error can quickly
affect any possible associations produced by the model. This problem can be quite
substantial if, for example, the accuracy figures we calculated for the Nebraska data set
are representative of other archaeological data sets. This is unfortunately a likely
scenario.

4.2.2 Model Testing

The U.S. Secretary of the Interior’s Standards for Identification (1983) state that the
accuracy of the model must be verified and that predictions should be confirmed through
field testing. If necessary, the model must be redesigned and retested. Such actions,
however, are virtually never taken within compliance investigations. The common
scenario is that a model is built based upon resources in surveyed portions of the APE or
upon surveyed areas in the general region. This model is then applied to unsurveyed
portions of the APE to stratify the APE into areas likely to contain resources, as well as
areas unlikely to contain resources. Field surveys are then conducted in these areas to
find resources. In the worst cases, field surveys are only conducted in highprobability
areas. In better-quality compliance investigations, sample surveys are conducted in all
stratified areas to actually test the predictive power of the model. Even in compliance
investigations that conduct field surveys in all stratified areas, a common methodological
error is that areas of high site probability are surveyed more intensively than areas of
lower site probability and resource totals are not adjusted to reflect the search intensity.
The result is that field surveys are self-fulfilling and almost always confirm the model;
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more sites are found in higher probability areas than are found in lower probability areas
(but see Dalla Bona 2000).

One of the reasons that this methodological error is ignored is the disjuncture between
the paradigm and units employed in a compliance investigation versus those in predictive
modeling. In a compliance investigation, the tangible data unit, as defined by law, is a
building, structure, object, or site.? In contrast, the meaningful unit in a predictive model
is a region or land parcel: an area within which there exists a probability for finding a
building, structure, object, or site (Kvamme 1988,1989). The priority in a field survey of
a modeled probability area for a compliance investigation is not to evaluate the
probability; it is to find sites. When sites are found, further work is spent evaluating the
resource for its significance and assessing the effects of the project on the resource rather
than closing the iterative loop by reassessing the model.

Under this scenario for the application of a predictive model, there is a single iteration.
A model is developed and applied in an attempt to limit the amount of field survey that
must be done to identify archaeological resources. This kind of modeling is problematic
for two reasons.

First, the model is not tested,; it is applied. In doing this, an assumption is made that an
adequate understanding of the factors that condition human land use exists for the APE.
Although an argument can be made that the role of the compliance archaeologist is not to
build theory but, rather, to apply theory constructed by research-oriented academic
colleagues, it is clear that we are only beginning to understand the variables at play in
conditioning human land use. Because a compliance investigation most often will result
in the damage or destruction of archaeological resources from either archaeological
excavation or the construction of the project, is it wise to use predictive modeling in this
way? We believe not.

Second, one of the criteria for evaluating a resource for its eligibility to be listed in the
National Register of Historic Places, Criterion D, is the resource’s ability to have yielded,
or its likely ability to yield, information important in prehistory or history The degree to
which a resource meets this criterion is inversely related to the resource’s predictability in
a predictive model. For example, if a resource is found in a location specified by a model,
the factors conditioning the resource’s placement on the landscape are understood.
Therefore, it has less potential to provide data about the past, at least from a land-use
context. Alternatively, a resource that is found where it is not predicted has great
potential to provide information important in prehistory or history because of the fact that
it was found where it was predicted not to be (Altschul 1990). This is one of the reasons
why the methodological error of surveying less intensively, or even not at all, in low-
probability areas is of concern.

4.2.3 Theoretical Issues

In addition to the problems we have pointed out in the areas of model building and model
testing, there are some additional theoretical issues of predictive modeling that are worth
mentioning briefly. First, most models assume that the selection and utilization of a place
on a landscape is based upon environmental criteria. While environmental criteria are
important for the location and performance of many activities, it is erroneous to build
sitelocation models on these criteria alone, or at least for all activities. While cognitive
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and other perceptual criteria can and have been incorporated into models, working with
nonenvironmental variables is not widely done in North America, although this has been
explored extensively in Europe (contributors to Lock and Stanci¢ 1995; Gaffney et al.
1996).

Second, the emphasis in archaeological predictive modeling is on sites normally
assumed to be residential settlements and special-use locations (quarries, rock art, etc.).
Two problems follow from this practice. Low-density archaeological remains are rarely
considered. While it is not useful to revisit the site-nonsite debate here, suffice it to note
that the nonsite approach has merit as a framework for understanding human land use
even though this framework is not usually used in predictive models. The primary reason
that nonsite data are not used is because of the paucity of available nonsite spatial data
sets. Even if such data sets existed, within a compliance context, isolated or low-density
evidence of human land use is routinely held to lack significance by the very nature of its
being isolated or low density and is therefore slated for dismissal. Yet, the low-density
archaeological record comprises substantially high numbers of discarded tools, usually
taken to be great sources of information on past place use (Wandsnider 1988).

More critically, however, “sites as settlements” denies the temporal and taphonomic
(Dunnell 1992; Kelly 1988) nature of site archaeological deposits. That is, when we find
Nebraska-phase ceramics at a particular location, what settlement temporality can we
infer for that location? A season? Many seasons? Extended or intermittent occupation
over many years? Many decades? A constellation of other information—the
presence/absence of structures, middens, and so forth—are commonly employed to
“temporalize” settlement assessments. But this temporal information, beyond coarse
chronology (i.e., “Central Plains Tradition settlement™) is not commonly incorporated in
settlement-modeling attempts. Yet, long-term Central Plains occupation and reoccupation
is a very different kind of place use than brief, nonrecurring occupation. It may be that we
must wait for the development of accessible temporal GIS (TGIS; Langran 1992) to fully
deal with the temporal and taphonomic variation that our archaeological site deposits
actually contain.

Third, correlation is not explanation. Correlating variables in a predictive model may
establish relationships among data, but it does not, by itself, explain the dynamics of
human land use (Church et al. 2000). What we really want to understand are the “whys”
that led to the performance of different sets of activities at different places at different
times. How are places on a landscape linked together through human organizational
systems? Additional theoretical constructs and bridging arguments must be used to
supplement the correlation of landscape features to provide explanation.

Fourth, in a compliance context, the current application and use of predictive
modeling actually leads to a stagnation of our understanding about the past. This is due to
the lack of model building, model testing, and model refinement iterations. When models
are only created and applied, nothing new about the past is learned. The current state of
knowledge about land use is quantified into a model, and then fieldwork, because of
some of the application problems we have noted, usually confirms the model. Sites in
low-probability areas, the ones that have the highest potential to be significant to our
understanding about the past, but that are usually not found, are destroyed by the project
that is undertaken. Thus, we rarely learn anything new and essentially continue to build
the same model from project to project (Ebert and Kohler 1988; Ebert 2000).
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4.2.4 Summary

In the preceding, we have criticized the use of predictive modeling in compliance
investigations by pointing out many of the problems in model building, application, and
theory. Nevertheless, we do not advocate discarding predictive modeling in archaeology.
To the contrary, predictive models, both within and outside of a GIS environment,
provide a very robust tool for understanding past human—land interactions. Within a
research framework, when iterations of model building, testing, and refinement can be
undertaken, this tool has been shown to advance our understanding of the past. In a
compliance framework, however, where predictive modeling is characterized by a lack of
iterations, we feel that predictive modeling serves neither the compliance process nor the
advancement of knowledge about the past.

4.3 Managing with Geospatial Technologies

We believe that with a different orientation, predictive modeling can have a productive
role in cultural resource management. As we noted at the beginning of this chapter, the
management of archaeological resources has been forced to a low priority by many
landholding federal agencies due to vast landholdings, numerous resources, small
budgets, and the pragmatic priority of fulfilling compliance obligations such as those
required by Section 106 of the NHPA. Although predictive modeling is largely unsuitable
for the identification component of compliance, we believe that such models can be used
to better purpose to put the “M” back in CRM.

To borrow from Judge and Sebastian (1988), who titled their publication Quantifying
the Present and Predicting the Past, rather than using contemporary data to model the
past, we propose a framework that consists of modeling the present and predicting the
future. Using this framework avoids most of the methodological problems mentioned
earlier and can easily and economically be implemented by federal cultural resource
managers even with large land areas, small budgets, and little time. To illustrate this
framework, we will present examples at the regional, site, and feature scales. All of these
examples have in common the use of contemporary data about the archaeological record
and natural environment to characterize the present and predict future conditions.

4.3.1 Regional Scale

Our first example comes from northwest Nebraska, on a portion of the Nebraska National
Forest, and illustrates how the threat of natural erosion on archaeological resources can
be assessed, predicted, and managed. In this example we have identified two of the major
variables contributing to sediment erosion: steep slope and lack of vegetation cover. The
principal variable, precipitation, can be assumed to be even over this region that covers
142 km?. Another major variable, soil type, was not factored in even though these soil
data were available. Lacking this data layer does not negate the results of our analysis,
but using it would certainly have enhanced and refined the results. We did use off-the-
shelf data for this analysis: a 7.5-min digital elevation model (DEM) from the USGS and
a multispectral Landsat thematic mapper (TM) image (Figure 4.1).



GIS and archaeological sitelocation modeling 74

To calculate the quantity of vegetation, we used the transformed vegetation index
(TVI) on TM bands 3 (0.63—0.69 um, red) and 4 (0.76-0.90 um, near infrared). The TVI
is one of several vegetation indices that can provide a rough, relative indication of the
amount of vegetation. In this image (Figure 4.2), the quantity of vegetation is shown
grading from none (white) to dense (black). Note that the northern portion of this area
consists of agricultural fields crosscut by riparian corridors, while the southern portions
are predominantly covered in pine forest. The DEM was used to compute the degree of
slope (Figure 4.3). White indicates low slope; black indicates high slope. Then the
inverse of the vegetation values was computed so that high values represent low
vegetation. The slope and TVI values were then rescaled into the same 8-bit data space
(256 distinctions). These two data sets were then added together to produce a numerical
index representing the relative threat of erosion. As seen in Figure 4.4, the threat values
grade from low (white) to high (black). Known archaeological sites were then added to
the analysis and can now be ranked according to their potential for erosion.

A federal cultural resource manager, with little time to monitor sites and a small
budget to spend on preservation, can use these results to predict which sites are at the
greatest risk and where, perhaps, cattle grazing might

Sparce VWegetation Dense Vegetation

FIGURE 4.1

Transformed vegetation index for the
7.5-min study area calculated from
Landsat TM data.

be reduced. Similar models can be constructed for looting, recreational damage, military
training, etc. Scarce resources can then be spent most effectively on the sites that really
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need the attention. This erosion model that we have presented is, admittedly, simplistic
and could certainly be refined by better data assessment, more careful model building,
ground truthing, and iterative refinements. Our point, however, is that even these
simplistic models—this one completed in less than two hours—can offer the cultural
resource manager effective tools for proactively managing archaeological resources.

4.3.2 Site Scale

Similar techniques can be applied at the site scale to help the cultural resource manager
monitor the condition of sites. In the western United States, erosion, vandalism, and
recreational activities such as the use of all-terrain vehicles (ATVs) can irreparably
damage archaeological sites. At Vandenberg Air Force Base in California, a systematic
aerial monitoring program is being used to maximize limited CRM resources. Cultural
resource managers responsible for large federal land parcels, although short on funds,
often have access to aircraft. Even “casual” aerial photography done out of the side of a
plane

FIGURE 4.2

Slope model calculated from a USGS
30-m digital elevation model.
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with a 35-mm or video camera can provide extremely valuable management results.

This example shows two images. The first was taken in 1997 (Figure 4.5), and the
second was taken in 1998 (Figure 4.6). Note that the oblique angle, scale, and camera
position are different in each image. Using image-analysis techniques, the two images
can be placed in the same geometry. In this case, the 1997 image was transformed into
the geometry of the 1998 image. This analysis was done relatively, but with ground-
control points and absolute geographic coordinates obtained from the global positioning
system, both images can be placed into geographic space (Figure 4.7).

Following the transformation, the limit of the bank erosion was marked for each year.
With the limits of erosion identified, the lines are simply subtracted from each other,
leaving polygons that represent the amount of the site lost to erosion (Figure 4.8).
Because the time that elapsed between the two photographs is known, the rate of erosion
can be determined. As in the previous example, this rate can then be compared with other
sites in the area to determine the resources that are most at risk (Figure 4.9). With
knowledge of rates of change, cultural resource managers are then in a position to predict
future site damage and can direct resources appropriately.

FIGURE 4.3
Model of erosion potential.
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4.3.3 Feature Scale

Our last example is an intrasite example and is at the scale of the individual feature. This
prototype study was completed for the City of Albuquerque and illustrates how a
predictive model can work in the present. The city has purchased a prehistoric
archaeological site to protect it from development. While the initial goal was to create an
active archaeological park with ongoing excavations, Native American objections caused
the city to reconsider their plans. Subsurface remote sensing was then proposed as a
nondestructive option to map the architectural remains of the pueblo. However, because
excavation could not be used to verify and identify geophysical anomalies, an alternative
geophysical methodology needed to be developed. An additional problem that needed to
be overcome on this project was that the architectural features of interest were unburned
adobe. Adobe that is unburned does not usually have properties that make it readily
distinguishable from the surrounding sediment matrix, at least in terms of most
geophysical properties.

The key to developing our approach was the fact that the city’s archaeologist had
noticed that, under the right conditions, several wall segments

FIGURE 4.4

Archaeological site-erosion threat
assessment and ranking.
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could occasionally be seen faintly exposed in the ground surface. Over a period of several
years, a number of wall segments were mapped to the extent that both walls and room fill
could be spatially defined over a small area. With known features identifiable, we
designed an approach based upon multispectral satellite remote sensing using supervised
classification. A similar approach using unsupervised classification had been used by
Ladefoged et al. (1995) in New Zealand. To cope with the unburned-adobe problem, we
decided to use three geophysical techniques to raise the discriminatory potential above
what any single method can achieve. We used magnetics (gradiometer), resistance, and
time-sliced radar data as the “spectral bands” (Figure 4.10). Given the thickness of the
known wall segments, about 20 cm, particular attention was given to both the spatial
resolution of data and the spatial control of data. It was essential that any error in
correspondence between all data layers be less than half the wall thickness, about 10 cm.

The supervised classification method is essentially a model-building and prediction
technique. In the computer, classes of phenomena are identified and marked on top of a
stack of data layers. In this case, walls and room fill were the two classes of interest
(Figure 4.11). There are a variety of classification algorithms that can be used to
differentiate features. For this study, we used the Mahalanobis classification algorithm,
which is based upon neural-network classification principals. Regardless of the particular
algorithm, however, the

FIGURE 4.5

Oblique aerial photography used for
monitoring and the 1998 aerial image.
(Courtesy of Applied Earthworks with
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support of Vandenberg Air Force Base.
With permission.)

FIGURE 4.6

The 1997 aerial image placed in the
geometry of the 1998 aerial image.
(Courtesy of Applied Earthworks with
support of Vandenberg Air Force Base.
With permission.)
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FIGURE 4.7

After georeferencing, the edge of the
bank was defined in each image.
(Courtesy of Applied Earthworks with
support of Vandenberg Air Force Base.
With permission.)
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FIGURE 4.8

The lines defining the edge of the bank
are subtracted from each other, leaving
polygons that define the bank erosion
that took place between the 1997 and
1998 photographs.
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FIGURE 4.9

Aerial photograph showing the
approximate site area and the areas of
geophysical data collection.

strategy of each is identical: to examine the variability in the data for the known features,
referred to as the training set, and develop mathematical criteria for distinguishing each
feature from the others. These criteria form the predictive model. In a second phase of
analysis, the model is applied to unknown areas of the data set and predicts, or classifies,
data into the typology that was defined. In our example, this would be either adobe wall
or room fill. In an ideal situation, of course, there would be iterations of prediction,
testing through excavation, and model refinement, but in this case there is no immediate
means of obtaining additional verification. The final step is to evaluate the classification
results against the original training data (Figure 4.12). In this study, a 69.6% success rate
was obtained, quite good given the nature of unburned adobe, a small sample size, and
some problems with the radar data.

This technique illustrates one way in which predictive models can be used at the
intrasite scale to manage resources in a nondestructive way. Additionally, it takes the
important step of realizing the nondestructive potential of geophysics by beginning to
develop absolute signatures for particular materials and feature types. Archaeological
geophysics, at least as it is most commonly practiced, involves identifying an unknown
anomaly that is then excavated to determine what it is. The geophysics technique may be
nondestructive, but the application of the technique is no less destructive than traditional
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excavation without using remote sensing. We would hope that, in the future, a library of
absolute signatures would exist

FIGURE 4.10

Different types of geophysical data are
treated as if they were different bands
of multispectral data. Using the known
sample of walls and room fill as the
training set, these geophysical data are
then classified using a supervised
classification technique.

for subsurface archaeological phenomena similar to those available for many plants,
minerals, and sediment types on the ground surface (e.g., ASTER Spectral Library, Johns
Hopkins University Spectral Library, NASA Jet Propulsion Laboratory Spectral Library,
USGS Spectral Library [Clark et al. 1993]).
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4.4 Summary

In this chapter, we have attempted two things. First, we have argued that, for many
reasons, the use of predictive modeling in cultural resource compliance, at least as it is
most frequently applied, is not best practice. As with any other method, we encourage our
colleagues to critically evaluate the appropriateness of predictive modeling for each
particular application and not to use the method when it is not warranted. We understand
the desire to reduce field time and labor costs in the resource-identification

FIGURE 4.11

Graph showing the lack of difference
between the mean data value for walls
and room fill across three geophysical
techniques. Thus, the potential for any
one individual technique to
discriminate between these two
material classes is low.

phase, but we hope that our integrity as scientists and as stewards of the archaeological
record supersedes the pragmatic realities of the business of compliance archaeology.
Second, we have tried to provide, through the examples presented here, a different
perspective on predictive modeling in archaeology In this framework, the present is not
characterized to retrodict the past, but to predict the future and contingent state of extant
resources. We believe that this framework can productively be used by cultural resource
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managers, even within their current constraints and compliance responsibilities, to regain
their stewardship responsibilities by intelligently assessing, prioritizing, and responding
to the needs of the resources they manage.

Notes
1. As well as a number of other applied disciplines, including architectural history, ethnology,

history, etc.
2. While landscapes and districts do exist in the compliance world, these are actual entities as

opposed to areas of probability.

FIGURE 4.12

Results of supervised classification
using the Mahalanobis classification
algorithm. Evaluating the classification
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model against the original data places
the accuracy of the model at 69.6%.
Rectilinear room blocks can be seen in
the left portion of the image; the right
portion is an area of architectural
collapse.
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5
Problems in Paleolithic Land Evaluation: A
Cautionary Tale

Hans Kamermans

ABSTRACT Land evaluation is a technique developed by soil scientists
to generate different models for land use on the basis of ecological and
social economic data. In archaeology, land evaluation can be used as a
deductive form of predictive modeling. In this chapter, land evaluation is
applied to Pleistocene data from the Agro Pontino (Lazio, Italy), a coastal
plain ca. 80 km southwest of Rome. The data were collected by the Agro
Pontino survey project between 1979 and 1989. After an initial inventory
of the paleoenvironment, socioeconomic models are constructed using
ethnographic, historic, and archaeological data. Land units are ranked
according to their suitability for a certain type of land use, and finally an
expected form of land use is compared with the archaeological record.
Land evaluation seems to be a very suitable technique for models of
simple types of agriculture (Kamermans 2000). For hunter-gatherer
societies, the application is more problematic. Some methodological
problems are presented here. In the end, it is shown to be impossible to
detect (assumed) differences in land use between the Middle and Upper
Paleolithic in the area.

5.1 Introduction

There are two different reasons for applying predictive modeling in archaeology. The
first is to predict archaeological site location as a guide to future developments in the
modern landscape—an archaeological heritage management application. The second is to
gain insight into former human behavior in the landscape—an academic research
application.

Modern developments are changing the European landscape rapidly. In many areas the
archaeological record is under threat. In 1992 a number of European countries signed in
Valletta (Malta) a treaty to protect the European archaeological heritage. This treaty is
now known as the Convention of Malta or the Valletta Convention. The aim of the
convention is “to protect the archaeological heritage as a source of the European
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collective memory and as an instrument for history and scientific studies” (Council of
Europe 1992). To reach this goal, governments want archaeologists to identify areas with
a high density of archaeological find spots in order to protect the archaeology that is left,
and to record and study what is under threat of being demolished. To do this,
archaeologists will have to reconstruct the original spatial patterning of the material
culture of the past. One way of doing this is by means of predictive modeling. However,
this practice has not been without criticism (cf. Ebert 2000).

The interpretation of behavior and material culture over space has always been one of
the fundamental aspects of archaeology (Green 1990:3). Nowadays the concept of
landscape is very popular, as seen in the work of scholars like Barbara Bender (1993),
Julian Thomas (1993), Christopher Tilley (1994), Richard Bradley (1997), and Gabriel
Cooney (2000). But especially during the late 1960s and the early 1970s—the time of
New Archaeology with its emphasis on explanation, quantitative thinking, and a
scientific perspective of the past—archaeologists turned to other fields, notably
geography, for tools and ideas for spatial analysis (Aldenderfer 1996). Examples are von
Thunen’s model of agricultural land use, Weber’s model of industrial location,
Christaller’s central place model, and Hagerstrand’s model of innovation. For
geographers, these models were described in Haggett’s book Locational Analysis in
Human Geography (1965). This book was “translated” for archaeologists by lan Hodder
and Clive Orton (1976) as Spatial Analysis in Archaeology. Predictive modeling can also
play a role in this more academic part of archaeological research.

Step 1
Basic Surveys

!

Step 2
Models

!

Step 3
CQualitative Class

|

Step &
Cruantitative Class

|

Step 5
Land Use

FIGURE 5.1 Different steps in the
application of land evaluation in
archaeology.
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The following application of land evaluation in the Italian Agro Pontino hopes to
contribute to the debate on differences in land use during the Middle and Upper
Paleolithic. Especially the subsistence strategies of the Neanderthals (the Ancients as
Stringer and Gamble [1993] call all premodern humans) are still far from clear.

5.2 Land Evaluation

The technique of land evaluation was originally developed by soil scientists (Brinkman
and Smyth 1973) and generates different models for land use on the basis of ecological
and social economic data. In an archaeological application of land evaluation, there are
five steps to be considered (Kamermans et al. 1985, 1990; Kamermans 1993, 1996, 2000)
(Figure 5.1):

Step 1 is an inventory of the natural environment collected by field
surveys and reviews. These data form the basis for a reconstruction of the
natural environment at different times in the past.

Step 2 is the construction of socioeconomic models for early forms of
land use with ethnographic, historic, and archaeological data.

Step 3 is the classification of the area into different land-mapping units
on the basis of physical factors. These units are described in terms of their
properties to provide a qualitative land classification.

Step 4 is a semiquantitative land classification: the measurement of the
suitability of an area for a certain type of land use on the basis of the
requirements for that type of land use.

Step 5 is an expected form of land use for every chosen socioeconomic
model based on results from steps 2 to 5. These models are then
confronted with the archaeological database. The comparison of the
expected form of land use with the archaeologically recorded land use
provides a basis for modifying the model and repeating steps 2 to 5.

The application of land evaluation in archaeology requires some (unfortunately arguable)
assumptions:

» Humans in the past exploited the environment according to the principle of least effort.

» The combination of environment and human behavior creates a specific spatial pattern
in particular types of areas.

* There is a relationship between prehistoric land use and artifact or find-spot density.

* The economic system during each archaeologically distinct period was, broadly
speaking, constant.

Archaeological land evaluation is a form of deductive predictive modeling. Predictive
modeling is a technique used to predict archaeological site locations in a region on the
basis of observed patterns or on assumptions about human behavior (Kohler and Parker
1986; Kohler 1988; Kvamme 1985, 1988, 1990). There are two different approaches to
predictive modeling, an inductive and a deductive one.
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With the inductive approach, a model is constructed based on the correlation between
known archaeological find spots and attributes (mostly) from the current physical
landscape. On the basis of correlation, causality is assumed, and the model is then used to
predict site location.

With the deductive approach, a model is constructed on the basis of a priori
knowledge (social, mainly anthropological, historical, and archaeological knowledge),
and the known find spots are then used to evaluate the model. Archaeological land
evaluation is an example of this last approach. Kamermans (2000) demonstrates the
differences between the two approaches of predictive modeling.

5.3 The Agro Pontino Survey Project

During the 1980s a team of Dutch, American, and Italian scholars and students studied
the archaeology and past environment of the Agro Pontino (Lazio, Italy) (Voorrips et al.
1983, 1991). The two main research themes of the project were the transition from the
Middle to the Upper Paleolithic (Loving et al. 1990/91, 1992; Loving 1996a, 1996b) and
the application of land evaluation in archaeology (Kamermans et al. 1985, 1990;
Kamermans 1993, 1996, 2000).

The Agro Pontino is a coastal plain along the Tyrrhenian Sea ca. 80 km southeast of
Rome (Figure 5.2). Half of its surface consists of a low-lying graben filled with peat; the
other half is formed by a complex of stable marine terraces (Segre 1957; Sevink et al.
1982, 1984, 1991; Kamermans 1991). Due to this special combination, the Agro Pontino
is a perfect area for the study of the relationship between humans and their natural
environment in the past: palynological data from the graben was used to reconstruct the
past
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FIGURE 5.2 The Agro Pontino.
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FIGURE 5.3 The Agro Pontino
geomorphological map.

environment (Eisner et al. 1984, 1986; Hunt and Eisner 1991; Eisner and Kamermans
2004), and the stable surfaces yield archaeological evidence from the Paleolithic onwards
(Zampetti and Mussi 1988; Loving et al. 1990/91). The area is famous for its Neanderthal
finds from the caves of Monte Circeo (Blanc 1957; Ascenzi 1990/91). Data from past and
ongoing research in the caves of nearby Monte Circeo were used as additional
information (Caloi and Palombo 1988, 1990/91).

5.4 Land Evaluation and Archaeology

5.4.1 Step 1: Basic Surveys

Step 1 is the reconstruction of the natural environment at different times in the past. The
reconstruction is based on an inventory of natural features identified through field
surveys and reviews.

Geologically speaking, the Agro Pontino consists of two parts, a low-lying graben at
the foot of the mountains, mainly filled with peat, and a dune area along the coast, both
dating from the Quaternary (Figure 5.3). A soil survey by Sevink distinguished four
marine terraces along the coast (Figure 5.4): the Latina level at ca. 25 m a.s. (above see
level); the Minturno level at ca. 16 m a.s.; the Borgo Ermada level at ca. 6 m a.s.; and the
youngest, still active marine complex, the Terracina level. Estimated dates are: Latina
level 560,000 BP
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FIGURE 5.4 The Agro Pontino land
units.

(Tyrrhenian 1), Minturno level 125,000 BP (Tyrrhenian I1), Borgo Ermada level 90,000
BP (Tyrrhenian 11), and Terracina level postglacial (pre-Neolithic). Each terrace consists
of a sandy beach ridge and a clayey lagoon. The graben is partly covered with Holocene
alluvial and slope deposits (Sevink et al. 1982, 1984,1991). The calcaric mountains along
the northern part of the Agro Pontino, the Monti Lepini and the Monti Ausoni, and Monte
Circeo in the extreme south, an isolated part of the Apennines, were formed during the
Mesozoic. In the northern part of the area are volcanic rocks, a result of volcanic activity
700,000 to 10,000 years ago (Segre 1957; Kamermans 1991).

During the last glacial period the youngest terrace was not yet formed, and the sea
level was 100 m below its present level. This means that the Agro Pontino was about
twice as large as today. The graben has a very young surface, leaving only a small sample
of the original surface available for research into the Middle and Upper Paleolithic.

Palynological research of a 9-m sediment core from the graben in an area called
Mezzaluna, close to the fault along the Monti Lepini, provided a welldated record of
environmental change from the full glacial to recent times (Eisner et al. 1984,1986; Hunt
and Eisner 1991; Eisner and Kamermans 2004).

During the part of the full glacial before 15,800 BP, a dry herb steppe was the
dominant regional vegetation (Figure 5.5). A number of woodland species sporadically
occupied moister ecological niches. The vegetation mosaic of steppe-forest and mesic
woodland suggests that although the climate was drier and cooler than today, there was
more moisture than at the glacial maximum. A freshwater lake occupied at least part of
the Agro Pontino graben during the full and late Pleistocene.
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FIGURE 5.5 Reconstructed ecological
zones of the Agro Pontino during the
early glacial.

An episode can be postulated that drained the lagoon between 35,000 and 16,000 BP. A
sand layer 9 m below the present surface may be all that remains of a massive erosional
event, and upper layers of the mid-Pleistocene clays may have been scoured by the
covering sands.

The lake that developed during the last part of the full glacial (15,800 to 13,000 BP)
on top of the pollen-poor sand layer was not the same as the earlier lake. Lagoonal
deposits were replaced by peaty clays. The species found in the pollen core are typical of
shallow open water. The regional vegetation consists of predominantly steppe
assemblages, suggesting that this full glacial landscape was more severe in terms of
aridity, with warm summers and dry, cool winters.

The late glacial period (13,000 to 10,000 BP) represents the most severe conditions of
the Late Quaternary. Open water continued to shrink, and as the land dried it was
occupied by wet and mesic herb assemblages. The driest and best-drained soils were
covered with steppe vegetation, as well as drought-adapted species of Compositae.
Quercus (oak) and Pinus (pine) managed to survive during this period but were unable to
spread to the expanding available land. Increasing Artemisia and Chenopodiaceae
(goosefoot) indicates a climate of cold winters and low precipitation too severe to permit
drought-adapted woodland species to flourish.

The early Holocene is characterized by a rapid expansion of the forest vegetation and
the disappearance of typical steppe taxa (Figure 5.6).

Because virtually no faunal remains are known from the plain, the fauna had to be
reconstructed from animal remains excavated in the caves of Monte Circeo and the
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Lepini and Ausoni mountains (see Caloi and Palombo 1988, 1990/91; Stiner 1994).
During the last interglacial, the following animals were

FIGURE 5.6 Vegetation
reconstruction of the Agro Pontino
during the Holocene.

among others living in Latium: hare, wolf, fox, hyena, elephant, rhinoceros, horse,
hippopotamus, fallow deer, red deer, roe deer, and aurochs.

At the beginning of the last glacial, hippopotamus disappears and ibex appears. During
the pleniglacial, elephant and rhinoceros disappear, and wild boar, red deer, and roe deer
are dominating the fauna. Other large mammals during that period are horse, wild ass,
fallow deer, aurochs, and ibex. In the Agro Pontino, chamois and red deer are
characteristic for the late glacial.

5.4.2 Step 2: Models

Step 2 is the construction of socioeconomic models for early forms of land use with
ethnographic, historic, and archaeological data.

With respect to their food management strategies, human hunter-gatherers can,
analogous to other organisms, be divided into generalists and specialists. A generalist eats
a greater range of food types or a greater variance of types or a greater “breadth” of
types; it has a great repertoire of feeding behavior (Schoener 1971:384). Winterhalder
(1981a: 27; 1981b: 69) studied the spatial implications of this distinction and concluded
(1981b: 69):
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This model predicts that organisms living in a relatively small-scaled
environmental mosaic will develop a broad use of habitats; they will be
patch type generalists. Conversely, those exposed to a large-scaled
environment will specialize and forage within relatively few habitats. As
scale increases the optimum patch choice shifts towards specialization.

For the purpose of this study two models are used, defined in terms of mobility and food
management strategies: the generalist practicing residential mobility and the specialist
practicing logistic mobility.

The characteristics of a generalist are: foraging in an area with a great variability in
land units and a high residential mobility. The archaeological correlate will be a low
visibility of camp sites, resulting in small find scatters dispersed over many small land
units.

The characteristics of a specialist are: high logistic mobility, foraging in large land
units. The archaeological correlate will be bigger find complexes dispersed over one or a
few land units.

5.4.3 Step 3: Qualitative Classification

Step 3 consists of the classification of the area into different land-mapping units on the
basis of physical factors. These units are described in terms of their properties to provide
a qualitative land classification.

It is not easy to construct a qualitative land classification for prehistoric hunter-
gatherer societies. To a certain extent Brinkman and Young’s land qualities related to
domestic animal productivity can be used (Brinkman and Young 1976:16).

This produces, in an adapted form, the following list:

« The productivity of an area in terms of edible vegetation for animals
» Climatic hardship affecting animals

» Endemic pests and diseases

* Toxicity of the vegetation

It is difficult to go any further because, for most factors Brinkman and Young used in
their original work, there is a lack of data for a prehistoric situation. Furthermore, in the
Middle and Upper Paleolithic, animals were not forced to stay in a certain area as is the
case with domestic animals. Wild animals will simply move if the circumstances are not
right. So the qualitative land classification for prehistoric hunter-gatherer societies has to
be replaced by a reconstruction of appropriate ecological zones for the various time
periods (Figure 5.5 and Figure 5.6).

5.4.4 Step 4: Quantitative Classification

The next step is a semiquantitative land classification: the measurement of the suitability
of an area for a certain type of land use on the basis of the requirements for that type of
land use.
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During step 2, two socioeconomic models were constructed: the generalist practicing
residential mobility and the specialist practicing logistic mobility. A semiquantitative
land classification was formulated for these two models.
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FIGURE 5.7 Semiquantitative land
classification of the Agro Pontino for
the generalist hunter-gatherer for the
Paleolithic (see also Table 5.1).

TABLE 5.1 Semiquantitative Land Classification
for the Generalist Hunter-Gatherer for the
Paleolithic?

Land Unit Predicted Rank

Coastal terraces
Small lagoonal
Volcanic and travertine

Latina lagoonal

a B~ W N

Eolian

% See Figure 5.7.

The characteristics of a generalist are: hunting various species of animals in an area with
a great variability in land units and a high residential mobility. In an effort to identify the



GlS and archaeological site location modeling 100

generalist, land units are grouped together to construct units with a great variability. The
smaller marine terraces along the coast are grouped together, as are the younger inland
lagoonal deposits and the volcanic and travertine deposits. The Terracina level and the
more recent alluvial/colluvial deposits are left out of the analysis because they did not
exist during the Paleolithic and the Epipaleolithic (Mesolithic).

Figure 5.7 and Table 5.1 give the Semiquantitative land classification for the
generalist hunter-gatherer for the Paleolithic, and Figure 5.8 and Table 5.2 for the
Epipaleolithic. The most suitable area would seem to be a combination of the younger
marine terraces characterized by a diverse environment, that is, sandy ridges alternated by
clayey plains. Also, the more inland lagoonal areas would be suitable for the general
hunter-gatherer, followed
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FIGURE 5.8 Semiquantitative land
classification of the Agro Pontino for
the generalist hunter-gatherer for the
Epipaleolithic (see also Table 5.2).

TABLE 5.2 Semiquantitative Land Classification
for the Generalist Hunter-Gatherer for the
Epipaleolithic®

Land Unit Predicted Rank

Coastal terraces 1
Small lagoonal 2

Volcanic and travertine 3
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Terracina lagoonal 4
Latina lagoonal 5
Eolian 6

& See Figure 5.8.

by the volcanic and travertine deposits and the big lagoonal and eolian deposits.

The characteristics of a specialist hunter-gatherer are: high logistic mobility and
foraging in large land units. The environment in the land units should be less diverse than
for the generalist hunter-gatherer. In this case the smaller marine terraces along the coast,
the younger inland lagoonal deposits, and the volcanic and travertine deposits are not
grouped together. Table 5.3 and Table 5.4 show that the large Latina lagoonal deposit
would be the most suitable land unit for hunter-gatherers during the Paleolithic and the
Epipaleolithic, respectively (Figure 5.9 and Table 5.3 for the Paleolithic, and Figure 5.10
and Table 5.4 for the Epipaleolithic).

TABLE 5.3 Semiquantitative Land Classification
for the Specialist Hunter-Gatherer for the

Paleolithic®
Land Unit Predicted Rank
Latina lagoonal 1
Borgo Ermada inland lagoonal 3
Minturno beach ridge 3
Eolian 3
Borgo Ermada lagoonal 6
Volcanic 6
Travertine 6
Borgo Ermada beach ridge 9
Minturno lagoonal 9
Minturno inland lagoonal 9
& See Figure 5.9.
TABLE 5.4 Semiquantitative Land Classification
for the Specialist Hunter-Gatherer for the
Epipaleolithic®
Land Unit Predicted Rank
Latina lagoonal 1

Borgo Ermada inland lagoonal 3



GIS and archaeological site location modeling 102

Minturno beach ridge 3
Eolian 3
Terracina inland lagoonal 55
Borgo Ermada lagoonal 5.5
Volcanic 55
Travertine 55
Terracina beach ridge 10
Terracina lagoonal 10
Borgo Ermada beach ridge 10
Minturno lagoonal 10
Minturno inland lagoonal 10

& See Figure 5.10.

5.4.5 Step 5: Land Use

The product of the last step is an expected form of land use for every chosen
socioeconomic model based on results from steps 2 to 4. A comparison of the expected
form of land use with the archaeologically recorded land use provides a basis for
modifying the model and repeating steps 2 to 5.

The archaeological data used for the land evaluation research was collected during
seven surveys over ten years; three small ones with two to four people and four larger
ones with a crew of up to twenty scholars and students. The total area of the Agro
Pontino is huge, approximately 750 km?, so it was decided to sample (Loving et al.
1991). In the then-prevailing tradition of processual archaeology, a multistage approach
(Redman 1973) was used
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FIGURE 5.9 Semiquantitative land
classification of the Agro Pontino for
the specialist hunter-gatherer for the
Paleolithic (see also Table 5.3).



Problemsin paleolithic land evaluation 103

] Rrank1
B rank?2
[ ttank 3
B Rank 4

Meters
o T T ]

10000, 00
_/
Grid l‘]} North

FIGURE 5.10 Semiquantitative land
classification of the Agro Pontino for
the specialist hunter-gatherer for the
Epipaleolithic (see also Table 5.4).

consisting of three stages: an exploratory phase, a probabilistic phase, and a problem-
oriented phase, with the results of one phase being used for making decisions about the
next phase. During the exploratory phase, fields were surveyed to get an impression of
the presence of archaeological material

TABLE 5.5 Comparison of Predicted and
Observed Preferences for General HunterGatherers
during the Middle and Upper Paleolithic

Land Unit Predicted Observed Middle Observed Upper
Rank Paleolithic Paleolithic
Coastal terraces 1 4 4
Small lagoonal 2 2 1
Volcanic and 3 3 3
travertine
Latina lagoonal 4 1 2

Eolian 5 5 5
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and the distribution over the different soil units as defined by the soil survey. The
information collected from these fields was used to develop methods for assessing factors
affecting visibility (Verhoeven 1991) and to estimate the size of a randomly selected
sample, which required making statements about the population of fields in the entire
Agro Pontino. During this same phase, field techniques were developed (Loving and
Kamermans 1991a). For the probability sampling phase, a systematic nonaligned transect
design was selected to ensure a sufficient sample size for making probability statements
about the archaeological populations in the Agro Pontino as a whole. During the
problem-oriented phase, additional materials were collected to help accomplish specific
research goals.

During all the surveys, the same field and analysis procedures were used. The result is
a very well-controlled sample from the open-air find spots from the Agro Pontino. All
phases of the survey together yielded in total 360 find spots; most of these, 289, were
multiperiod. The material from the Paleolithic and Mesolithic find spots consisted
exclusively of stone implements, mostly made from small-size flint and quartzite pebbles
(Loving and Kamermans 1991b).

For the application of land evaluation in the Agro Pontino, find-spot density per land
unit was used instead of artifact density, although Foley (1981) convincingly
demonstrated that artifact density should be given preference. It was impossible to use
artifact density because it would require dating the individual artifacts, and because most
find spots are a palimpsest, this was not only impracticable but even impossible. The rank
order of the different land units, based on data on find-spot density collected during the
survey, was compared with the expected rank order of the land units for the different
models. Apart from that, a test was carried out to see if there was a significant difference
in find-spot density between the different land units for every separate time period.

Table 5.5 gives the expected and observed rank order for the generalist hunter-gatherer
during the Middle and Upper Paleolithic. Both the Spearman test and Kendall’s test were
used to test the rank order (Table 5.6). With an a of 0.1, none of the rankings was
significant, which means that none of

TABLE 5.6 Spearman’s and Kendall’s Test for the
Data in Table 5.5

Spearman Test Kendall’s Test
Period r t(3) signif. Tau-c  ASEl t
Middle Paleolithic .10000 0.17408 .87289 .00000 48990 .00000

Upper Paleolithic .30000 0.54470 .62384 .20000 45607 43853
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TABLE 5.7 Comparison of Predicted and
Observed Preferences for Specialized
HunterGatherers during the Middle and Upper

Paleolithic
Land Unit Predicted Observed Middle Observed Upper
Rank Paleolithic Paleolithic

Latina lagoonal 1 2 4
Borgo Ermada inland 3 3 3
lagoonal
Minturno beach ridge 3 6 5
Eolian 3 10 8
Borgo Ermada lagoonal 6 8 7
Volcanic 6 4 9
Travertine 6 9 2
Borgo Ermada beach 9 5 6
ridge
Minturno lagoonal 9 7 10
Minturno inland 9 1 1
lagoonal

TABLE 5.8 Spearman’s and Kendall’s Test for the

Data in Table 5.7

Spearman Test Kendall’s Test
Period r t(8) signif.  Tau-c  ASEl t

Middle Paleolithic —.00629 —0.01780 .98623 .00000 .33092 0.00000
Upper Paleolithic 13217 0.37714 .71588 .10667 .30591 0.34868

the observed rankings correspond to the predicted ranking for general hunter-gatherers.

Table 5.7 gives the expected and observed rank order for the specialist hunter-gatherer
during the Middle and Upper Paleolithic. Table 5.8 gives the results for both the
Spearman test and Kendall’s test, which were used to test the rank order. Again, with an
a of 0.1, none of the rankings was significant, which means that none of the observed
rankings corresponds to the predicted ranking for specialized hunter-gatherers.

For the Middle and Upper Paleolithic, none of the expected rank orders for either the
generalist or the specialist fits with the observed rank order. For the Epipaleolithic, the
results are more promising. The rank order based on find-spot density of the land units
does not correlate with the order for the generalist hunter-gatherers (Table 5.9 and Table
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5.10), but it does for the specialist hunter-gatherers (t>2 and significance<.1, see Table
5.11 and Table 5.12).

TABLE 5.9 Comparison of Predicted and

Observed Preferences of Generalist

HunterGatherers for the Epipaleolithic

Land Unit Predicted Rank Observed Epipaleolithic

Coastal terraces 1 5
Small lagoonal 2 2
Volcanic and travertine 3 4
Terracina lagoonal 4 6
Latina lagoonal 5 3
Eolian 6 1

TABLE 5.10 Spearman’s and Kendall’s Test for

the Data in Table 5.9

Spearman Test Kendall’s Test
Period r t(4) signif. Tau-c ASE1 t

Epipaleolithic —.42857 —0.94868 .39650 —.33333 .36107 0.92319

TABLE 5.11 Comparison of Predicted and

Observed Preferences of Specialized

HunterGatherers for the Epipaleolithic

Land Unit Predicted Rank Observed Epipaleolithic

Latina lagoonal 1 5
Borgo Ermada inland lagoonal 3 4
Minturno beach ridge 3 3
Eolian 3 2
Terracina inland lagoonal 5.5 10
Borgo Ermada lagoonal 5.5 9
Volcanic 55 8
Travertine 55 6
Terracina beach ridge 10 12
Terracina lagoonal 10 12

Borgo Ermada beach ridge 10 7
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Minturno lagoonal 10 12

Minturno inland lagoonal 10 1

TABLE 5.12 Spearman’s and Kendall’s Test for
the Data in Table 5.11

Spearman Test Kendall’s Test
Period r t(11) signif. Tau-c ASE1 t
Epipaleolithic 54254 2.14208 .05540 48915 22991 2.12755

Land evaluation as a form of deductive predictive modeling fails to identify a dominant
form of land use for the Middle and Upper Paleolithic, but it succeeds for the
Epipaleolithic. Elsewhere it was shown that land evaluation works in the Agro Pontino
for the Neolithic period (Kamermans 1993, 2000). Would the results for Paleolithic
hunter-gatherer societies be more conclusive if an inductive way of predictive modeling
was used?

5.5 Inductive Predictive Modeling

With the inductive approach to predictive modeling, a model is constructed on the basis
of correlations between known archaeological find spots and attributes that are
predominantly taken from the current physical landscape. It is only a predictive model
when the observed correlations are extrapolated. These extrapolation models are most
commonly used in archaeological heritage management archaeology, but may also have
their use in scientific research, for example to analyze anomalies in an observed spatial
pattern. In order to explain the failure of land evaluation to detect differences in land use
in the Agro Pontino between the Middle and the Upper Paleolithic, an inductive approach
is used to see if there is a correlation between find-spot density and land units.

The archaeological hypothesis for the Middle Paleolithic is that human hunter-
gatherers had no preference for any of the constructed land units. The null hypothesis is
that there is no difference in find-spot density between the defined land units.

The Attwell-Fletcher test was used to test this hypothesis. This test (Attwell and
Fletcher 1985, 1987) is designed to test the existence of a significant association between
a point pattern distribution and categories of an environmental variable. It compares an
observed pattern with a simulated random pattern. Two sets of hypotheses are tested. The
null hypothesis for the first set is “no association,” the alternative hypothesis is that at
least one category is favored. In the other case, the null hypothesis is of course the same,
but the alternative hypothesis is that at least one category is avoided. The main
advantages of this test over, for instance, the x* test are that it can be applied to small
samples, that it indicates the strength of the association, and that it is directional (i.e., is a
category favored or avoided?). The oftenused and misused x* test can do nothing more
than demonstrate the existence of a relationship. A weakness of the Attwell-Fletcher test
is that the simulation does not take into account the problem of autocorrelation, that is,
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the inherent relationship between different aspects of the natural environment. For both
the Attwell-Fletcher test and the 4 test, one should be aware that the existence of an
association does not necessarily imply a causal relationship.

Table 5.13 shows that one land unit, eolian, has a value below the fifth percentile such
that the null hypothesis of no association is rejected because there is an association. This
means that there are fewer than expected find spots in the eolian area. This is, however,
very easily explained by geological

TABLE 5.13 Attwell-Fletcher Test to Compare the
Find-Spot Density and Geomorphological Land
Units for Hunter-Gatherers during the Middle
Paleolithic in the Agro Pontino

Land Unit Number of Expected Observed Category

Find Spots Proportion Proportion Weight
Coastal terraces 13 0.2904 0.23 0.16
Small lagoonal 12 0.1483 0.21 0.30
Latina lagoonal 23 0.2769 0.40 0.31
Eolian 2 0.1410 0.04 0.05
Volcanic and 7 0.1435 0.12 0.18
travertine

Note: Number of find spots=57; number of categories=5; number of simulations=1000; 95th
percentile=0.34+0.005; 5th percentile=0.07+0.013.

TABLE 5.14 Attwell-Fletcher Test to Compare the
Find-Spot Density and Geomorphological Land
Units for Hunter-Gatherers during the Upper
Paleolithic in the Agro Pontino

Land Unit Number of Expected Observed Category

Find Spots Proportion Proportion Weight
Coastal terraces 7 0.2904 0.22 0.15
Small lagoonal 7 0.1483 0.22 0.30
Latina lagoonal 12 0.2769 0.38 0.28
Eolian 2 0.1410 0.06 0.09
Volcanic and 4 0.1435 0.13 0.18
travertine

Note: Number of find spots=32; number of categories=5; number of simulations=1000; 95th
percentile=0.38+0.008; 5th percentile=0.03+0.005.



Problemsin paleolithic land evaluation 109

phenomena such as the old surface being no longer available, or find spots having
disappeared under eolian deposits.

For the Upper Paleolithic the hypotheses are the same. The archaeological hypothesis
is that human hunter-gatherers had no preference for any of the constructed land units.
The null hypothesis is that there is no difference in find-spot density between the land
units. Table 5.14 shows that, for the Upper Paleolithic, the null hypothesis is not rejected
and that there is no difference in find-spot density between the land units.

5.6 Discussion

For the Middle and Upper Paleolithic none of the expected rank orders for either the
generalist or the specialist fits with the observed rank order. Furthermore, no statistically
significant difference in find-spot density for both time periods could be found between
the defined land units, with the exception of the eolian land unit for the Middle
Paleolithic. The absence of find spots in this land unit, however, has nothing to do with
land use but can be explained on the basis of the geology. So is there a problem to be
solved or not? No pattern whatsoever could be detected. Does that mean that the wrong
research tool (land evaluation) was used, or does it mean that the way in which Middle
and Upper Paleolithic people used the Agro Pontino did not create a distinct patterning of
the material record?

Was the wrong research tool used? How do we know that the land evaluation
technique works? For the Epipaleolithic, the rank order of the land units correlates with
the order for the specialist hunter-gatherers. This is what was to be expected for the
Mesolithic. The land evaluation technique also works for societies with a subsistence
based on simple types of agriculture (Kamermans 2000).

So assuming that the land evaluation technique works, a different explanation for the
fact that none of the models work has to be found. Is there something wrong with the
assumptions? The assumptions are:

» Humans in the past exploited the environment according to the principle of least effort.

» The combination of environment and human behavior creates a specific spatial pattern
in particular types of areas.

* There is a relationship between prehistoric land use and artifact or find-spot density.

* The economic system during each archaeologically distinct period was, broadly
speaking, constant.

There could be a problem with the second assumption. Perhaps the definition of the land
units is too detailed for hunter-gatherers. It is possible that during the Middle and Upper
Paleolithic hunter-gatherers considered the Agro Pontino as one land unit. There is also a
possibility that there was a difference in exploitation between the coastal zone (Agro
Pontino) and the hinterland. Earlier research points in this direction (Voorrips et al.
1985).

The even spread of the material culture throughout the landscape makes the model of
generalists practicing residential mobility in the Agro Pontino for both periods most
likely, although the number of artifacts per find spot for these periods is very low. The
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archaeological correlate should be larger find complexes dispersed over one or a few land
units.

Do these results contribute to the discussion on Middle and Upper Paleolithic
subsistence practices in the Agro Pontino? There is a debate between American and
Italian scholars about the hypothesis that a major shift in land use took place in the region
during the Middle Paleolithic (Mussi 1999). In the late 1980s two American scholars
studied the faunal and the lithic material from the cave sites of Monte Circeo. The results
were sensational. Both Stiner and Kuhn (Kuhn 1991, 1995; Stiner 1991, 1994; Stiner and
Kuhn 1992) see a major change in subsistence during the Middle Paleolithic in Latium.
Before 55,000 BP, scavenging was the main activity for subsistence, while after 55,000
BP, hunting was. They base their conclusions mainly on the fact that head parts of
medium-sized ungulates dominate the pre-55,000 BP collections. The range of formal
tool types in the Mousterian sample stays the same across the 55,000-year boundary, but
the reduction technique changes. Mussi (1999) expressed surprise that scavenging
continued until that late a date in the Agro Pontino and ascribes the differences in,
notably, the faunal material to differences in excavation techniques. Indeed, all the sites
dated before 55,000 BP were largely excavated before the Second World War, the later
sites after the war.

When using land evaluation, it is necessary to assume that the economic system during
each archaeologically distinct period (defined on the basis of flint typology) was
constant. Unfortunately, this makes it impossible to test the Kuhn and Stiner hypothesis.
But the lack of difference between both the density and the distribution of find spots with
typologically Middle and Upper Paleolithic material does not support the current view of
a major cultural break during the Middle or between the Middle and Upper Paleolithic.
The cautious conclusion from the land-evaluation exploration is that both the Middle
Paleolithic Ancients and the Upper Paleolithic Moderns used the same way of exploiting
the Agro Pontino: as generalist huntergatherers practicing residential mobility.

5.7 Conclusions

The tentative conclusion we can draw is that the land evaluation technique as a form of
deductive predictive modeling does work. It works for societies with a subsistence based
on simple types of agriculture (Kamermans 2000), and it works for hunter-gatherer
societies, as demonstrated by the fact that, for the Epipaleolithic in the Agro Pontino, the
rank order of the land units correlates with the order for specialist hunter-gatherers.

There are, however, problems with the Middle and Upper Paleolithic. None of the
subsistence models for those periods fit with the distribution of the archaeological
material in the plain, and it looks as if there is no significant difference in find-spot
density between the land units for Middle and Upper Paleolithic material. This can be
attributed to a number of causes:

» The definition of the land units was not in accordance with Paleolithic land use. The
generalist hunter-gatherers operated on a different scale and exploited the whole of the
coastal zone as one land unit.
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* The area dating from the Pleistocene that is available for research is unrepresentative.
The sea level was 100 m lower than today, and consequently the coastal plain was
twice as large. Furthermore, the surface of the graben consists of Holocene deposits.

* The archaeological sample was unrepresentative. No use was made of the
archaeological data from the caves of Monte Circeo or the Lepini and Ausoni
mountains. Only data from the sample collected by the surveys was used.

Unfortunately, due to the above-mentioned methodological flaws, this research cannot
clarify the problem of a possible occurrence of a major cultural break during the Middle
or between the Middle and Upper Paleolithic. But the tentative conclusion, that both the
Middle Paleolithic Ancients and the Upper Paleolithic Moderns exploited the Agro
Pontino as generalist hunter-gatherers practicing residential mobility, makes a major
change improbable.
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6
Regional Dynamics of Hunting and
Gathering: An Australian Case Study Using
Archaeological Predictive Modeling
Malcolm Ridges

6.1 Introduction

Archaeological predictive modeling (APM) comprises a diverse set of approaches that
have found application, primarily, in cultural resource management (CRM). The general
aim of these approaches is to estimate the occurrence of archaeological material
throughout a landscape given what is known about an existing archaeological sample
(Sebastian and Judge 1988). Such knowledge has proved useful for improving the
management of cultural heritage by permitting more effective regional conservation
strategies (Hall and Lomax 1996; Kincaid 1988). However, it is also possible to outline
some wider applications for the set of approaches that APM comprises. For the study
outlined in this chapter, APM was used as an exploratory data tool to examine the factors
determining the location of archaeological finds within a region in northwest central
Queensland, Australia.

The high degree of correlation between patterns in the natural environment and the
distribution of hunter-gatherer archaeological features is now wellestablished (Ebert and
Kohler 1988; Jochim 1981; Veth et al. 2000). Such findings highlight the importance that
environmental context has on the location of hunter-gatherer activities. However, an
emerging issue is that environmental variables, on their own, are not appropriate for
explaining all the variation in the location (or composition) of archaeological features
(Gaffney and van Leusen 1995). Although environmental context is readily incorporated
into GIS systems and spatial models of the distribution of archaeological features
(Kvamme 1985), other factors are also important if the full range of variation in the
location and form of archaeological features is to be understood (Whitley 2000).

Ebert (2000:133) recently flagged this issue by suggesting that the frequency with
which archaeological predictive models return an accuracy on the order of 60 to 70%
may be indicative of an important component being omitted from models. If this is the
case, then it also suggests that there is a need to expand the range of variables commonly
employed in archaeological predictive modeling (Gaffney and van Leusen 1995).
Addressing this issue requires a continuing focus upon the relationship between hunter-



GIS and archaeological site location modeling 116

gatherer behavior and its archaeological expression (Binford 1982). However, for
archaeological predictive modeling, it also means identifying spatial variables that are
relevant to the location of hunter-gatherer activity, but that are not necessarily drawn
directly from ecological patterns in the environment.

In part, the historical emphasis upon the use of variables describing patterns in the
natural environment can be traced to the types of logic used to develop predictive models
(Salmon 1976), which has led to a gap between models that predict versus those that
explain (Altschul 1988). However, the position taken here is that, in reality, it is common
for archaeologists to use both forms of logic in a feedback loop during research (VanPool
and VanPool 1999), and that neither approach, on its own, provides a complete
mechanism for understanding the factors driving archaeological patterns. From such a
perspective, APM might be better thought of as a suite of tools that attempts to elucidate
generalizations about the location and distribution of archaeological features, which can
also be used to predict the spatial context in which they occur.

A related issue is the persistence of applying APM to “sites,” in particular, in the case
of hunter-gatherer studies, open lithic scatters. The types of hunter-gatherer behavior
associated with the activities preserved in open lithic scatters generally demonstrate a
high degree of correlation with patterns in the natural environment due to the
requirements of subsisting through hunting and gathering. But this does not necessarily
mean that all hunter-gatherer archaeological features will also correlate with patterns in
the environment to the same degree or in the same way. It therefore remains possible that
the importance of environmental context may be overestimated because the contribution
of other factors has not been thoroughly explored separately for different kinds of
archaeological evidence. When different types of archaeological evidence are modeled
independently, significant differences have been observed in the models produced and in
the importance of individual variables (Ridges 2003).

In this study, a large number of open lithic scatters were considered, along with a
significant corpus of rock art that existed in the region. To some extent, an understanding
of the roles that rock art and stone-tool production played in regional behavior could be
derived by studying them independently. However, such an approach would overlook the
fact that both were components of a regional system of behavior, and that some
dependent relationship probably existed between them, despite their distinctiveness. The
approach adopted in this study was to develop their respective spatial contexts, since this
potentially provided an avenue to understanding the commonality between them. It was
here that APM demonstrated its utility as an important research tool.

In many instances, generalizations about where archaeological features occur can be
used to predict the location of undiscovered archaeological features. But equally
important, they can also be used to refine theories about past behavior. With this in mind,
APM was utilized in this study as a tool to explore the spatial trends in archaeological
data. In turn, these patterns were important in understanding the kinds of behavior that
produced the regional pattern of archaeological feature distribution.
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6.2 Background

The work reported in this chapter formed part of a project conducted in northwest central
Queensland, Australia (see Figure 6.1). This is a remote part of Australia, on the fringe of
the arid zone. Aridity in the region results from a low and highly unpredictable rainfall
pattern. Rain mostly occurs during the summer months in the form of thunderstorms.
Evaporation far exceeds precipitation, so that standing water is rare, and there are no
continuously flowing rivers in the region. Topographically, the region consists of low
rugged uplands and broad alluvial plains. The region demonstrates little relief, varying by
only about 200 m in elevation. Nonetheless, where relief is appreciable, it is generally
abrupt, and although not sufficient to completely hinder the movement of people in any
direction, it is enough to have strongly influenced the routes people traveled.
Ethnographic reports (Roth 1897) indicate that the movement of people closely followed
the drainage lines, which also provided the most reliable and plentiful sources of water
when it was available.

In the upland zones, the vegetation is generally low, open woodland interspersed with
hummock grasses. On the plains, this gives way to extensive areas of tussock grassland.
The geology consists of Cambrian and Precambrian sedimentary units that have been
intruded by granite. The

FIGURE 6.1 Location of the study
region.
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upwarping of the sedimentary units produces a low tableland forming abrupt mesas at its
margins. It is in rock shelters along these mesas that many of the rock-art sites
encountered in the region are located. A wide variety of rock types occur in the
surrounding region, enabling stone artifacts to be manufactured from quartz, quartzite,
chalcedony, chert, silcrete, and metabasalt.

Aboriginal occupation in the region extends back at least 15,000 years, although it
appears to have been punctuated by periods of abandonment (Davidson et al. 1993).
These people adopted a hunting and gathering lifestyle that was typical for the arid zone
of Australia (e.g., Gould 1980). Their population density was very low, and they were
highly mobile. Importantly, Roth, the most prominent ethnographic source for the region,
suggests that the movement of people related as much to social and economic reasons as
it did to subsistence (Roth 1897:132).

The sparseness of the vegetation means that archaeological visibility in the region is
very good. The most common archaeological feature is open lithic scatters. In an
investigation of sampling methods, Davidson observed stone artifacts in every 500-m
quadrant he examined (Davidson 1993b), demonstrating the abundance of stone artifacts
occurring in the region. Stone artifacts were also flagged by Hiscock as one of the
significant research interests of the region (Hiscock 1988), and stone technology has been
the focus of several theses (Drury 1996; James 1993; Kippen 1992). The other most
commonly encountered archaeological features include rock-art sites (Davidson et al. in
press; Ross 1997), ceremonial stone arrangements, and stone and ocher quarries.

The region, which provides a rich and well-preserved archaeological record, also
played host to two kinds of behavioral processes that are important for understanding the
prehistory of the region: trade and rock art. Each of these is outlined briefly below.

Roth described in some detail the movement of items into and out of northwest central
Queensland. The most important of these items were stone axes manufactured within the
region (Davidson et al. in press); ocher, which was also available within the region (Jones
1984); and the narcotic plant pituri (Duboisi hopwoodii) (Watson 1980), which occurs
just to the south of the region. Along with naturally available items, rights to hold
ceremonial events were also important in the network of regional exchange (Roth
1897:120-125). The harvesting of pituri each year facilitated several months of
ceremonies and markets at various places throughout the region (Roth 1897:133). The
region has been implicated in the vast network of exchange that extended from the Gulf
of Carpentaria to the Flinders Ranges in Australia’s south (McBryde 1987; Mulvaney
1976). In turn, these extended links formed part of the trunk routes crisscrossing the
Australian continent (McCarthy 1939) that facilitated connections between Aboriginal
people throughout mainland Australia.

Northwest central Queensland also contains a diverse and underreported assemblage
of rock art about which there is little oral tradition. About 180 art sites containing
paintings or engravings have been recorded in the region. Morwood (1985) outlined the
distinctiveness of a recurring anthropomorphic figure that set the region apart from the
other major centers of rock art in Australia. Detailed analysis of these figures by Ross
(1997) showed that they were spatially restricted to the region. Ross also demonstrated
that the anthropomorphic figures are depicted with stylistic elements that, while adhering
to a regional style, potentially encoded additional information about group affiliation.
Ross concluded that the method of portrayal of anthropomorphic figures indicated a
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social system that sought to distinguish itself from its neighbors. For whatever reason, it
was important to mark places throughout the region with a prolific array of iconic
pictures.

A social system that sought to distinguish itself from its neighbors contrasts with the
freedom of movement associated with trade. Similarly, if anthropomorphic figures were
part of a boundary maintenance system, the process was not straightforward given that
they occur throughout the region rather than at its periphery. Thus, some relatively
complex spatial processes are evident in the behavior of Aboriginal people in the region.
Importantly, these spatial processes involve social and economic interactions, so that the
location of archaeological features cannot be understood purely from the viewpoint of
subsistence. Understanding these spatial processes necessarily involves invoking
procedures capable of characterizing economic and social spatial relationships along with
environmental context.

6.3 Approach

The approach adopted in this study aimed to explore some of the concepts that have been
developed by Zubrow (1994) and van Leusen (in Gaffney and van Leusen 1995). Doing
so involved three steps:

1. Constructing a model of the location of open campsites using conventional
archaeological predictive-modeling procedures and variables

2. Examining the spatial arrangement of residuals in this model to identify where and
how the model was deficient

3. Deriving a new variable that addressed these deficiencies and that produced a model
with better predictive power and improved explanatory power

The first step is covered only briefly because it is not the focus of this paper, and the
methods employed have been well described in other places (Judge and Sebastian 1988;
Kvamme 1989; Warren 1990; Wescott and Brandon 2000). In summary, the first step
involved forming an inductive predictive model using logistic regression, where the
dependent variable was the presence or absence of open campsites. The input data was
derived from archaeological surveys conducted over a ten-year period (Davidson 1993a)
and comprised 840 100-m squares that have been surveyed, 322 of which contained
campsites and associated artifact assemblages. In addition, 46 art sites have been
recorded in the study area.

The independent variables included geology (Blake et al. 1983), vegetation (Neldner
1991), elevation,’ slope, aspect, wetness® (Wolock and McCabe 1995), topographic
position (Jenson and Domingue 1988), and proximity to streamline. The last variable was
defined especially for this study to describe the particular importance of water in semiarid
landscapes (see Figure 6.2).

Streamline proximity was measured using the accumulated cost distance of slope away
from drainage lines. In addition, the cost distance was measured separately for each of the
stream orders resulting from a Strahler (1952) classification of the drainage pattern. Each
of these cost-distance surfaces was then rescaled to have values ranging from 0 to 1, and
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inverted so that areas close to streams had a value of 1. The layers were then combined
arithmetically using a weight corresponding to stream order. Thus:

Streamline proximity=(cost distance from stream order 1) +(2xcost distance
from stream order 2) +(3%cost distance from stream order 3)...etc.

The advantage of measuring streamline proximity in this way was that it captured the
greater likelihood of finding water in downstream areas.

: Drainage
. Steam proximity

. High

Lorw

FIGURE 6.2 Streamline proximity
variable.

Because none of the streams in the region flow regularly, and because water holes are
intermittent in the sandy bottoms of the drainage channels, measuring streamline
proximity in this way better reflected the nature of water availability. A second advantage
of the approach was that it identified the confluence of several middle-order streams. In
cost-benefit terms, these areas offered the greatest potential for finding multiple sources
of water within close proximity to one another.

A presence-only approach was used to develop the model, so that a set of 500
randomly distributed points comprised the comparison, or nonsite, data. It is
acknowledged that such an approach incurs the potential for misrepresenting a “site” as a
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“nonsite” (Kvamme 1988). However, because the important element of this study was to
examine the trends in the occurrence of archaeological features, and in the absence of
surveyed “nonsites,” this was deemed the best approach possible. After performing
appropriate statistical tests to confirm the appropriateness of each variable for
distinguishing campsites versus noncampsite locations (following Warren and Asch
2000:15), a model was formed using all the input variables. This model was then used to
predict the probability of a campsite occurring in any of the 1-Ha grid cells used to
describe the study area.

The most important aspect of the approach used in this study concerns the steps taken
once the model was built. Although the approach adopted in step one routinely results in
a model with a useful degree of predictive accuracy, in this study it was known a priori
that the variables outlined above were unlikely to be the only factors determining the
location of archaeological features. The difficulty, in terms of developing a methodology
for addressing the social factors that were known to be playing a role in the region, is
how such factors could be identified, and how variables describing them could be
incorporated into the model.

It is here that the ideas developed by van Leusen (in Gaffney and van Leusen 1995)
and Zubrow (1994) become important. Van Leusen suggested that human settlement
patterns can be understood in terms of two components: environment and culture.
Through using environmental variables to describe the location of activities, van Leusen
argued that any remaining variation should reflect cultural factors unrelated to, in this
case, subsistence through hunting and gathering. Thus he states (Gaffney and van Leusen
1995:370): “By applying an ED [environmental determinism] model to a dataset, one can
eliminate environmental patterning in the data, leaving a clearer view of whatever
cultural factors may have influenced the data,”

Van Leusen’s idea has some appeal in that it captures the notion that although there
may be strongly influential factors in determining where people choose to locate their
activities in a given landscape, there can remain other significant factors determining
more subtle levels of variation. In other words, despite the patterns in the environment to
which hunter-gatherers must adapt, there still remains an influential overarching
sociocultural system (Gamble 1986:31). Pickering (1994) has argued that despite ample
anthropological descriptions of the way social landscapes operated in Aboriginal
societies, very little of hunter-gatherer social landscapes produces detectable evidence in
the archaeological record. Thus, even with knowledge that an overarching sociocultural
system is present, we may find that, given the nature of the archaeological signature of
hunter-gatherers, the locational variation produced by many sociocultural processes is
masked by the dominance of subsistence-related behavior. However, as Gamble
(1986:299) observed for the Palaeolithic in Europe, such a proposition remains largely
untested archaeologically.

It is unlikely, therefore, that van Leusen’s idea can be applied in such simplistic terms.
For one thing, models produced using ecological context are subject to how well the
subsistence system is captured in such an approach. For example, the remaining variation
might be produced through subsistence behavior not described by the environmental
variables employed. Similarly, as Gaffney (Gaffney and van Leusen 1995:375) argues, it
is difficult to separate behavior induced by patterns in the environment from a cultural
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decision to adapt to an environment in a particular way, thus precluding any simple, two-
part separation.

The other important work in this discussion is Zubrow’s (1994) approach to mapping
cognitive space. Using a modeled optimal settlement pattern and that observed
archaeologically for the Iroquois cultural area, Zubrow hypothesized that the differences
between them reflected variation within an otherwise economically driven pattern. In this
case, the variation was driven by the operation of a cognitive landscape. Zubrow
attributed the degree of difference from the predicted location for a site to a host of local
and regional cultural factors, unrelated to the economic system. Zubrow argued that by
examining the differences between a predicted and observed settlement pattern, the effect
of one aspect of a cultural system upon another aspect could be observed when the
predicted pattern was based on explicit theoretical statements. In other words, Zubrow
effectively describes an approach whereby the idea of van Leusen might be investigated.

An approach to applying Zubrow’s methodology is to look at the residuals of the
model produced in step one. Traditionally, the analysis of residuals is used to assess the
quality of the fit of a regression model to the data, since the mathematics of regression
seeks to minimize the size of the residuals. However, it is important to realize that in
modeling spatial data, the residuals have a spatial component also, and systematic
variation in the spatial arrangement of residuals can be informative about spatial variables
that could be missing from a model. Or, as in this case, they can be used to identify
nonenvironmental variables that have a systematic spatial pattern. Unfortunately, very
few archaeological predictive modeling projects examine the spatial patterning of
residuals of models to see whether any identifiable systematic variation remains.

Whereas in Zubrow’s study the objective was to propose an approach to mapping a
cognitive landscape, in this study the analysis of residuals was used as a guide in
identifying where systematic spatial variation remained in the model. Equipped with such
knowledge, variables demonstrating a high degree of correlation with the pattern of
residuals could then be investigated. As will be illustrated below, a relationship was
found between the size of the residual and the proximity of art sites. With additional
variables identified, their inclusion into the model may then improve the quality of the
resulting model in terms of both predictive and explanatory power.

6.4 Results

Figure 6.3 shows the results of applying the methodology outlined for step one. The
calculated accuracy of the model (i.e., the number of campsites predicted by the model to
have a probability greater than 0.5) was 71%. Important in the model is the emphasis it
places on the highest probability zones being on the flatter terrain in the bottom and right
of Figure 6.2. The areas in the center of Figure 6.3 are the uplands that comprise a series
of broad sandstone mesas. From the mesa areas, the drainage largely follows a radial
pattern, illustrating how these upland areas are at the headwaters of most creeks and have
very low capacity for containing water. To a large
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FIGURE 6.3 Conventional inductive
model using environmental variables.

extent, then, the pattern produced in this model is consistent with what would be expected
from a model primarily describing subsistence behavior.

Figure 6.3 might also be considered as a reflection the environmental component of
archaeological location variation if we were to apply van Leusen’s idea. However, it is
worth exploring other variables because, with a predicted accuracy of 71%, the model is
still within one standard deviation of what would be achieved by randomly setting
locations as campsite or noncampsite. It would therefore appear that either a significant
amount of variation remains unexplained by the model, or that a significant amount of the
variation in the location of campsites is random.

The next step was to examine the residuals in the model, explore what other variables
might be correlated with them, and provide an avenue for improving the model. As was
explained earlier, the other important type of archaeological feature occurring in the
study region is rock art. These rock-art sites are known to have played an important role
in the maintenance of a social identity for the people in the region (Ross 1997), and as
such were likely to have played an important role in structuring behavior at the regional
level.
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Figure 6.4 shows the distribution of art sites in the study area and, in conjunction, also
shows the size of the residual at each of the recorded campsites in the study area by
varying the size of the circle representing them. A visual examination of Figure 6.4
reveals that there is a tendency for
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FIGURE 6.4 Comparison of art sites
and residuals from the model based on
environmental variables only.

the largest residuals, i.e., the largest white circles, to be located close to art sites,
suggesting that proximity to an art site may be an important element in unexplained
variation in the model. This was supported by performing a spatial autocorrelation
analysis on the residuals, using the Greary measure (Cliff and Ord 1973). The result was
a value of 0.68, which indicates there is a strong tendency for an archaeological location
with a large residual to occur close to locations with similarly high residuals, and vice
versa for locations with small residuals. It therefore became clear that there was a
significant degree of systematic spatial variation in the residuals of the model.

To explore this idea further, a proximity-to-art-sites layer was derived using a cost-
distance function and slope as a cost layer. The result was similar to a catchment analysis
(Bailey and Davidson 1983), where high values indicate areas that are proximate to



Regional dynamics of hunting and gothering 125

several art sites. Thus, if we were to think about access to art sites in a similar way as we
might model access to resources (Winterhalder 1981), then areas in this layer with high
values might be preferentially chosen for placing campsites if being close to art sites was
important. The resulting layer is presented in Figure 6.5. It can be seen in this figure how
areas along drainage lines that are close to several art sites produce values that are higher.
Hence, in some cases at least, it would appear that sticking to drainage lines could serve a
dual purpose, providing access to water and several art sites.
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FIGURE 6.5 Proximity-to-art-sites
layer.

Incorporating the distinctiveness of each site into the proximity layer extends this idea.
The recording of art sites in the study region has revealed that some may contain just one
or two paintings, whereas others can have hundreds, the implication being that some art
sites may have been more important, or perhaps visited more often, than others.
Consequently, it could also be suggested that the sphere of influence of each art site is
likely to be different.

With this in mind, a procedure similar to that used to derive streamline proximity was
employed. In this instance, each of the art sites was given a score for its diversity,
measured as the number of motif types occurring at that site. The diversity values were
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then classed into five categories, and the cost distance derived for each class separately.
The five resulting layers were then rescaled to have values ranging from 0 to 1 and
inverted so that values of 1 occurred at art sites. The layers were then summed
arithmetically in the same way as for stream orders, by applying a weight for the degree
of diversity occurring at the art sites in each class. The result was the layer presented in
Figure 6.6, which also shows the diversity of each art site as a function of the size of the
dot representing it.

A final examination of the art-sites-proximity variable was to compare the proximity
values occurring for each campsite with the size of the residual occurring from the initial
model. This is produced as a scatter plot in Figure 6.7. In this figure, it can be seen that as
the size of the residual becomes
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FIGURE 6.6 Art-site-proximity
variable, weighted by site diversity.
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FIGURE 6.7 Plot of weighted art-site
proximity against regression residuals.

larger, there is a tendency for a campsite to be in closer proximity to art sites that have a
broad diversity. The result was a strong correlation between the size of the residual, and
the weighted proximity to art site, as is indicated by an r? value of 0.3. From this it could
be concluded that proximity to art sites was an important component in influencing where
campsites were located, and that proximity to art sites was more important for art sites
containing a diverse range of motifs.

The final step was to rebuild the model, this time including the weighted proximity-to-
art-sites variable. This model is presented in Figure 6.8, where it can now be seen that
higher probabilities occur for much of the upland areas where art sites are located.
Significantly, this means that the model gives greater weight to areas along second- and
third-order streams, which is more consistent with observations in the region whereby
many campsites are encountered at the base of mesas. Similarly, there is less distinction
along the course of drainage lines, as campsites in the new model are predicted to occur
in more or less equal probability along their full course. This is consistent with the
ethnographic observations of Roth (1897), who observed that the drainage lines were the
main routes of travel. Correspondingly, the calculated accuracy of the model has
improved to 75% of campsites now being predicted to have a probability greater than 0.5.
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FIGURE 6.8 New model
incorporating weighted proximity to
art sites.

Interestingly, the eastern margin of the mesas in both models maintained very similar
predictions. As may have been gathered from the distribution of recorded campsites and
art sites in Figure 6.4, there is considerable bias in survey coverage in the region, with
most emphasis being on the western and southern portion of the region. Consequently, an
indirect benefit of approaching model development in the way it was for this study has
been its utility for designing future work. Although survey in this region has been
intensive, it has not been comprehensive, in the sense that there are several areas that
could now be targeted for future survey using testable assumptions arising from the
models (in particular, whether art sites that are likely to occur on the eastern margin of
the uplands demonstrate a similar influence on the location of campsites). Such results
have implications for cultural resource management in that not only is the ecological
context of a model testable through revised research design, but also the explanatory
utility of the model, as behavioral principles, can also be investigated.
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6.5 Discussion

The position adopted in this study was that all archaeological evidence reflects a
multitude of influences. Many of these influences are difficult to observe at the gross
level because they can be swamped by one or two dominating factors. Nonetheless, this
study proceeded with the intention of attempting to identify at least one example of how
nonsubsistence-related behavior might be (a) important in determining the location of
campsites and (b) incorporated into archaeological predictive modeling. The gain in
predictive accuracy from 71% to 75% may not have been a substantial improvement in
predictive terms, but the real benefit is in a model that improves in explanatory power as
well. Thus the approach adopted in this study offers some scope for getting out of the
mold of employing either deductive versus inductive logic for model formation (Ebert
2000; Salmon 1976).

Crucial to moving forward in this way is viewing the location of huntergatherer
activities as being flexible, rather than rigidly adhering to ecological context. Although
there undoubtedly were limitations in the way huntergatherers located their activities in
semiarid environments such as western Queensland, it would appear that, within these
limitations, there was considerable scope for other factors to come into play. It would
therefore appear that van Leusen’s notion of separating environmentally driven variation
from other aspects of culturally determined variation has some merit. But equally, there is
still quite a vast array